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Abstract

In this thesis, we study charge-ordering phenomena by a two-dimensional

extended Hubbard model with nearest-neighbor Coulomb interaction. We

first formulated a non-skeleton conserving approximation and applied it to

study how charge fluctuation affects charge and spin susceptibilities. We

find enhancement of the spin susceptibility toward charge-ordering transi-

tion. We also calculated response functions by a self-consistent conserving

approximation. The charge compressibility diverges just before the charge-

ordering transition, and becomes even negative after divergence. This nega-

tive charge compressibility indicates instability of a uniform electron states,

and may provide a key to understand inhomogeneous charge dispropor-

tion observed in several two-dimensional organic conductors like θ-(BEDT-

TTF)2RbZn(SCN)4 and β-(meso-DMBEDT-TTF)2PF6.
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Chapter 1

Introduction

Low-dimensional organic conductors are known to exhibit a variety of in-

teresting electronic properties such as superconductivity, magnetism and

charge-ordering etc. [1] Regardless of apparent complexity of crystal struc-

tures, many classes of organic conductors can be understood by a single-

band model starting with the HOMO or LUMO molecular orbits. Unique

electronic properties observed in molecular solids originate from the nature

of these HOMO(LUMO) molecular orbits. Because of the large molecular

orbits, organic conductors possess the following peculiar features. (1) Soft-

ness. The weak van der Waals bonding between molecules leads to large

deformation with respect to external pressure or chemical pressure induced

by substitution of cations or anions. (2) Cleanness. The crystal of molecular

solids includes little impurity like defects due to the nature of van der Waals

bonding between large molecules. (3) Long-range Coulomb interaction. The

effective on-site interaction is relatively small compared with the inter-site

Coulomb interaction because screening is weak due to the extended nature

of molecular orbits.

Among a variety of phase transitions appearing in organic conductors,

charge-ordering (CO) phenomena, which are a main target in this thesis,

have recently attracted much attention in strongly correlated electron sys-

tems. One possible mechanism of charge-ordering is the Wigner crystalliza-

tion due to long-range Coulomb repulsion. Charge disproportion in the CO

phase has first been reported by NMR measurement in quasi-one dimensional
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material (DI-DCNQI)2Ag [2]. After this discovery, a number of experimen-

tal studies has been performed to clarify the CO in quasi-one-dimensional

material such as (TMTTF)2X and quasi-two-dimensional material such as

α-(BEDT-TTF)2I3, θ-(BEDT-TTF)2MM ′(SCN)4 (M = Rb, Cs, M ′ = Zn,

CO) and β-(meso-DMBEDT-TTF)2PF6 [3]. The experiments have shown

clear evidence of long-range CO accompanied with charge disproportion in

low-temperature insulator phases of these materials. These experiments,

however, also have provided several unsolved questions on CO phenomena

especially in quasi-two-dimensional systems.

As a typical example, we consider the quasi-two-dimensional system θ-

(BEDT-TTF)2RbZn(SCN)4 (abbreviated as the RbZn-system in the follow-

ing). This system shows a metal-insulator transition characterized by rapid

exponential increase of resistance below TMI = 195K [4]. The spin suscep-

tibility shows a broad peak around the metal-insulator transition with no

anomaly. A paramagnetic phase is kept down to 30K where a spin-gap be-

havior indicating the spin-Peierls transition appears. This behavior of the

uniform spin susceptibility above 30K is analyzed by the Bonner-Fisher curve

of the Heisenberg model, which is an effective model of localized electrons.

Although this analysis may be justified in the insulator phase, it is nontriv-

ial to apply it to the metallic phase above TMI. It is also clear that this

effective spin model cannot treat the effect of charge disproportion and its

fluctuation properly. In the mean-field calculation, which is a frequently used

approximation for the CO phenomena, the spin susceptibility is expected to

show a temperature-independent Pauli paramagnetism in the metallic phase.

Therefore, one may consider the spin susceptibility from the weak-coupling

perturbative approach starting with the metallic state and incorporate charge

fluctuation into it. This approach has not been studied well in the previous

theoretical studies of the CO phenomena.

Another question is related to the charge disproportion around TMI. In

the low-temperature insulator phase of the RbZn-system, stripe-type long-

range CO is observed by the X-ray diffraction measurement [5, 6]. 13C-NMR

measurement has also shown a large charge disproportion in the CO phase [7].

However, anomalous broadening of 13C-NMR spectrum observed above TMI

revealed a new feature of CO in this system. Such a broadening is unusual
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since the metal-insulator transition is of first order. By detailed analysis of

both transverse and longitudinal relaxation rates, this broadening has at-

tributed to large fluctuation of charge disproportion in space, indicating that

the fluctuation should be extremely slow (< 6KHz) [8]. Similar inhomoge-

neous charge disproportion above TMI have been reported by infrared and

Raman spectrum [9] and dielectric measurement [10]. This strange state is

often called as simply ”short-range charge-ordering” without defining it ex-

actly. By theoretical works based on the atomic limit [11], the Hartree-Fock

approximation [12], the exact diagonalization [13] and the variational Monte

Carlo method [14], it is suggested that several CO phases with different pat-

terns becomes almost degenerate. This degeneracy, which indicates domain

formation with different CO states, may be relevant to the so-called short-

range CO. It, however, seems that essential discussion on domain formation

of different CO states in a clean system is lacked.

Motivated by the above experimental results of CO in organic conduc-

tors, we investigate the effect of charge fluctuations near CO instability by the

weak-coupling approach equipping a sophisticated diagrammatic expansion.

Starting with an extended Hubbard model including the nearest-neighbor

Coulomb interaction, we calculate the spin and charge susceptibilities by

careful consideration of the vertex corrections in order to satisfy various con-

servation laws through the Ward identity. We show that enhancement of

the spin susceptibility toward the CO transition may be understood by lead-

ing contribution of the vertex corrections. We also show that the uniform

charge compressibility becomes negative just before CO transition by self-

consistent treatment of large charge fluctuations. The latter result, which

indicate instability of the electronic system, may give one possible explana-

tion of inhomogeneous charge disproportion observed in organic conductors.

This thesis is organized as follows. In Chapter 2, we describe the experi-

mental and theoretical reviews on CO in quasi-two-dimensional organic con-

ductors. In Chapter 3, we first formulate systematic inclusion of the vertex

corrections in the response functions. Then, we study the leading contribu-

tion of the vertex corrections in order to study the behavior of the spin and

charge susceptibility near CO transition. In order to consider the feedback

effect of critical charge fluctuation onto the Green’s function, we formulate
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the self-consistent treatment based on the shielded interaction approximation

(SIA) in Chapter 4. We discuss the CO transition by the response function

for all the wave numbers by neglecting the vertex correction. We further

calculate the uniform charge compressibility including all the vertex correc-

tions within SIA by calculating derivative of the charge number with respect

to the chemical potential, and show that the charge compressibility diverges

and even becomes negative just before the CO instability. The results are

summarized in Chapter 5.

4



Chapter 2

Overview of charge-ordering in

organic conductors

2.1 Electronic properties of charge-ordering

phenomena

Low-dimensional organic conductors exhibit various electronic properties such

as superconductivity, magnetic and charge-ordering. In particular, charge-

ordering phenomena have recently attracted attention to understand effects

of the long-range Coulomb interaction on strongly correlated electron systems[1,

3]. Since the molecular orbital of organic conductors is large, the wave func-

tion is extended and the on-site Coulomb repulsion U is expected to be

suppressed. Therefore, the inter-site Coulomb repulsion V is expected to

be comparable to U in organic conductors. It is thought that V is a key

to understand the charge-ordering transition. Therefore, the extended Hub-

bard model (EHM) with inter-site Coulomb potential is often used to analyze

charge-ordering phenomena.

In this section, we first review typical materials which exhibit charge-

ordering transition in (BEDT-TTF)2X salts ( abbreviated as (ET)2X ) where

X represents different atoms or molecules. Next, we review several theoretical

studies based on EHM.
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Figure 2.1: Schematic figure of five patterns of ET salts. The oval represents

an ET molecule. The dotted and solid line represent the transfer integral

between molecules. The circle around two molecules in κ and λ represent a

dimer unit.

2.1.1 Experimental review

ET salts have the alternative layers of X− with the closed shell and ET+1/2

with 3/4 filled π-band. There are five patterns classified by arranging pat-

terns of molecules labeled by the Greek characters α, β, θ ,κ and λ as shown

in Fig. 2.1[15]. Among them, we focus on θ-type ET salts to review charge-

ordering transition.

The electronic property of θ-(ET)2X salts is related to the dihedral an-

gle φ between ET molecules[4]. Fig. 2.2 shows the schematic phase diagram

experimentally obtained. The materials in the region of large φ such as θ-

(ET)2 RbX(SCN)4 ( X = Zn, CO) exhibit metal-insulator (MI) transition

around TCO ≈ 200 K. This transition accompanies with the lattice mod-

ulation. The uniform spin susceptibility χs changes only slowly increases

and has a broad hump at TCO[16]. With decreasing the temperatures be-

low TCO, χs behaves like a low-dimensional localized spin system and a spin
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Figure 2.2: Schematic phase diagram of θ-(ET)2X salts on temperature T

and dihedral angle φ[4]. CO and SC represent charge ordered and supercon-

ductivity state, respectively.

gapped behavior is observed below around 10 K[7]. It is notable that the

existence of the short-range charge order above T > TCO is suggested by X-

ray scattering[5]. An anomalous broadening occurs is also observed by NMR

for these temperatures[8]. On the other hand, the materials in the region of

smaller φ such as θ-(ET)2CsX(SCN)4 (X=Zn, CO), a sharp MI transition

is not observed. However, with decreasing temperatures, the resistivity ρ

gradually increases below around 50 K, while χs changes the behavior from

Pauli paramagnetic to Curie-like behavior at this temperature. With the

further decrease of φ, the charge-ordering transition does not occur and the

superconducting state appears below about 5 K for θ-(ET)2I3[17].

The similar kind of ET salt β-(meso-DMBEDT-TTF)2PF6 also occurs the
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Figure 2.3: Schematic phase diagram of β-(meso-DMBEDT-TTF)2PF6 on

temperature and pressure[21]. SRCO, LRCO and SC represent short-range

charge ordered, long-range charge ordered and superconductivity state, re-

spectively.

charge-ordering transition[18, 19, 20]. Fig. 2.3 shows the (P, T ) phase dia-

gram for β-(meso-DMBEDT-TTF)2PF6. At ambient pressure, the resistivity

ρ shows a metallic behavior above 120 K. With decreasing temperatures, ρ

gradually increases below 120 K and MI transition occurs at TMI ≈ 70 K.

On the other hand, the magnetic susceptibility has a broad hump around

TMI. The X-ray measurements shows that the intensity of superstructure re-

flections (h, k/2, l/2) gradually increases below 100 K and suddenly increases

at TMI with decreasing temperatures. From the superstructure reflections,

it is found that the insulating state exhibits the checkerboard-type charge-

ordering where the charge disproportion occurs within the dimer unit. β-

(meso-DMBEDT-TTF)2PF6 exhibit SC state next to the CO state with the

transition temperature Tc ≈ 4.6 K under the pressure P ≈ 0.6 kbar [21].

The pressure dependence of the SC state is observed below 5.2 kbar and
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have found that the SC state is suppressed with increasing pressure. It is

important to note that both ρ and the intensity of superstructure reflections

gradually increase before the long range order transition occurs. It is pro-

posed by Mori that this strange behavior is due to the growth of short range

order and is related to the giant non-linear conductivity[22].
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2.1.2 Theoretical review

To investigate the charge-ordering transition, there are several theoretical

works based on the extended Hubbard model (EHM) in which the effect

of the long-range Coulomb interaction is represented only by the nearest-

neighbour repulsive interaction[23]

H =
∑
〈ij〉,σ

tijc
†
i,σcj,σ +

U

2

∑
i,σ

niσniσ̄ +
∑
〈ij〉

Vijninj, (2.1)

where 〈ij〉 is the summation over neighboring pairs, tij is a transfer integral

between neighboring sites. c†iσ (ciσ) is the creation (annihilation) operator of

an electron on i site with a spin σ (= +(−) for ↑ (↓)). U and Vij are interac-

tion strength for the on-site and inter-site Coulomb repulsion, respectively.

The ground state of the EHM on quarter filled square lattice was studied

by a numerical Lanczos Exact Diagonalization(LED) method for cluster size

up to L = 16 by Ohta et al [24]. They have shown that the checker-board

type CO (CBCO) state is realized for some parameter regions. To investigate

the electronic property of CBCO state, Calandra et al evaluated the Drude

weight by a numerical LED method for cluster size up to L = 20 [25]. They

found that the CO metallic state exists between the uniform metallic and the

CO insulator state. The existence of the CO metallic state at finite temper-

atures has also been suggested by a dynamical mean field approximation[26]

and correlator projection method[27]. However, there is a possibility that the

finite size effect may be important in these calculations, since a lattice size

is strongly restricted in the case of LED method. Therefore, it is expected

that the charge fluctuations are not fully taken into account. Furthermore,

it is difficult to investigate the various spatial patterns of CO states for LED

method.

To investigate the spatial patterns of the CO states, mean-field approx-

imation (MFA) was applied [28, 12] and succeeds to obtain various spatial

patterns of the CO states. A phase diagram was also determined in the MFA

to the thermodynamic potential[29, 30, 31]. In the MFA phase diagram, the

static charge response function in the random-phase approximation (RPA)

diverges at some ordering wave number along the second-order transition
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line. An effect of fluctuations due to this divergence of the RPA charge re-

sponse function for superconductivity is also investigated[29, 30, 31]. It has

been shown that charge fluctuations favor to stabilize d-wave SC state. This

tendency has also been found by Fluctuation Exchange (FLEX) study[32].

An effect of fluctuations due to this divergence of the RPA charge response

function on the self-energy was discussed to find an anomalous T -dependence

of the effective mass[33]. Effects of charge fluctuations on the uniform spin

susceptibility have studied by auxiliary-field Monte Calro method for lat-

tice sizes up to N = 122 [34]. In this method, the uniform spin susceptibility

seems to follow the Curie-Weiss law and have no singularity at CO transition.

However, the quantum fluctuations may be not fully treated in this method,

since the low temperature region cannot be accessed due to the negative sign

problem.

In the theoretical studies above mentioned, effects of charge fluctuations

on the response functions have not been studied well at low temperatures.

Generally, in calculating these response functions, not only the self-energy

but also the vertex corrections are indispensable for satisfying some exact

relations such as conservation laws. In this thesis, we investigate the vertex

corrections to the charge and spin response functions in the 2D EHM at the

3/4-filling.
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Chapter 3

Enhancement of spin

susceptibility toward

charge-ordering transition

3.1 Introduction

The vertex corrections to the charge and spin response functions were studied

for the two-dimensional (2D) Hubbard model in the absence of the inter-site

Coulomb interaction, corresponding to the limiting case of V = 0 in the

extended Hubbard model (EHM). In this limiting case, there is no charge-

ordering transition, but anti-ferromagnetic spin fluctuations are developed

near the half-filling. It has been shown that the uniform charge susceptibil-

ity χc is strongly enhanced due to the nested anti-ferromagnetic spin fluctua-

tions through the so-called Aslamazov-Larkin type vertex corrections[35, 36].

Likewise, it is expected that charge fluctuations have some contribution to

the spin susceptibility near charge-ordering transition, though the spin fluc-

tuations is weak at 3/4-filling.

In this chapter, we investigate the vertex corrections to the charge and

spin response functions in the 2D EHM at the 3/4-filling in the presence

of the nearest-neighbor Coulomb interaction. By calculating the static re-

sponse functions at an arbitrary wave number vector, we consider effects

of the vertex corrections on the charge-ordering temperature TCO and the
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uniform charge (spin) susceptibility χc (χs). Note that there exists a cele-

brated Baym-Kadanoff (BK) scheme for a conserving approximation, where

the thermodynamic potential, the self-energy and the response functions can

be constructed in a self-consistent way[38, 39]. It is, however, difficult to

obtain the static response functions for all the wave numbers in the BK

scheme for practical reasons. In this chapter, we introduce another scheme

to formulate systematic inclusion of the vertex corrections which enables us

to make actual calculations (the details are shown in Appendix). We apply

this scheme to the EHM on the 2D square lattice. After determining the

charge-ordering transition line in a T -V phase diagram, we obtain χc and χs

in the uniform metallic phase near this transition line. Next, we explain the

results of χc and χs in terms of the Landau parameters in the Fermi liquid

theory. Finally, the results are summarized.
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3.2 Formulation

3.2.1 Exact relations for Green’s function

In this section, we consider a generic single-band Hamiltonian H on a lattice

with band dispersion εk and electron-electron interaction vσσ′(q) to formulate

systematic inclusion of vertex corrections:

H =
∑
k,σ

(ϵk − µσ)c†k,σck,σ

+
1

2Ω

∑
σ,σ′

∑
k,k′,q

vσσ′(q)c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ , (3.1)

where Ω is the volume of the lattice system, c†kσ (ckσ) is the creation (an-

nihilation) operator of an electron with a wave number vector k and a spin

σ (= +(−) for ↑ (↓)). Because of usefulness for describing the exact relations,

we have introduced µσ = µ + σh with µ and h being a chemical potential

and an external magnetic field, respectively.

The charge and spin densities for the Hamiltonian H are given by n =∑
σ nσ and m =

∑
σ σnσ, respectively. Here, nσ is the electron number

density for a spin σ; nσ can be related to the single-particle Green’s function

Gσ(k) by

nσ =

∫
k

eiϵlηGσ(k), (3.2)

where
∫

k
denotes (T/Ω)

∑
k = (T/Ω)

∑
k

∑
l with k being a combined no-

tation of a wave number vector k and a fermionic Matsubara frequency

iϵl = (2l + 1)πiT with an integer l, and η is a positive infinitesimal. We

can write Gσ(k) as

Gσ(k) =
1

iϵl + µ̃σ − εk − Σ̃σ(k)
, (3.3)

where µ̃σ absorbs the chemical potential shift due to the mean-field (Hartree)

term in the self-energy Σσ(k) as

µ̃σ = µσ −
∑
σ′

vσσ′(0)nσ′ , (3.4)
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and Σ̃σ(k) is the excess self-energy, which is calculated by subtracting the

mean-field term from the total self-energy Σσ(k).

The charge and spin response functions are related to the density-density

response function χσσ′(q) as

χNN(q) =
1

2

∑
σ,σ′

χσσ′(q), (3.5a)

χSzSz
(q) =

1

2

∑
σ,σ′

σσ′χσσ′(q), (3.5b)

where q represents a combined notation of a wave number vector q and a

bosonic Matsubara frequency iωl = 2lπiT with an integer l; χσσ′(q) can be

written in terms of the one-interaction irreducible part χ̃σσ′(q) as

χσσ′(q) = χ̃σσ′(q) −
∑
σ1,σ2

χ̃σσ1(q)vσ1σ2(q)χσ2σ′(q), (3.6a)

χ̃σσ′(q) = −
∫

k

Gσ(k + q)Gσ(k)Λσσ′(k; q). (3.6b)

Here, Λσσ′(k; q) is the vertex function, including the vertex corrections to the

response functions.

The uniform charge and spin susceptibilities near charge-ordering are of

central interest in this thesis. Here, we define these quantities (per spin) from

the electron number density as χc ≡ (1/2)(∂n/∂µ) = (1/2)
∑

σ,σ′(∂nσ/∂µσ′)

and χs ≡ (1/2)(∂m/∂h) = (1/2)
∑

σ,σ′ σσ′(∂nσ/∂µσ′). Then, the isothermal

susceptibilities χc and χs should be equal to the so-called q-limit of the charge

and spin response functions, respectively:

χc ≡
1

2

∂n

∂µ
= χNN(0), (3.7a)

χs ≡
1

2

∂m

∂h
= χSzSz

(0). (3.7b)

These relations hold when both the response functions and the isothermal

susceptibilities are exactly calculated. If one takes some approximation, how-

ever, these equations are not necessarily guaranteed to hold. In this chapter,

we calculate the response function in an approximate form, and determine
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the charge-ordering transition point by the static response functions such

that

χNN(q, 0) = ∞ at some finite q. (3.8)

It is, then, desirable that the susceptibilities is calculated by the values at

q = 0 in the static response functions that determine the transition point in

an approximation scheme, requiring that eqs. (3.7) hold. In order to construct

such an approximation, it is crucial to satisfy the q-limit Ward identity

Λσσ′(k; 0) = δσσ′ − ∂Σ̃σ(k)

∂µ̃σ′
. (3.9)

We can show that the exact relations (3.7) hold automatically in arbitrary

approximation satisfying the Ward identity (3.9) as follows. By eqs. (3.2),

(3.3) and (3.4), it is not hard to see that ∂nσ/∂µσ′ satisfies the following

equation:

∂nσ

∂µσ′
= −

∫
k

Gσ(k)2
∑
σ1

(
δσ,σ1 −

∂Σ̃σ(k)

∂µ̃σ1

)
∂µ̃σ1

∂µσ′

= −
∫

k

Gσ(k)2
∑
σ1

(
δσ,σ1 −

∂Σ̃σ(k)

∂µ̃σ1

)

×

(
δσ1,σ′ −

∑
σ2

vσ1σ2(0)
∂nσ2

∂µσ′

)
. (3.10)

After using the Ward identity (3.9) with eqs. (3.6), we obtain the relations

(3.7).

Before closing this subsection, we give some comments on a set of basic

equations in the quantum many-body theory[40]. In addition to eqs. (3.6),

the following equations make up this set:

Σ̃σ(k) = −
∑
σ′

∫
q

Gσ(k + q)Vσσ′(q)Λσσ′(k; q) , (3.11a)

where Vσσ′(q) represents the effective electron-electron interaction given by

Vσσ′(q) = vσσ′(q) −
∑
σ1,σ2

vσσ1(q)χ̃σ1σ2(q)Vσ2σ′(q) . (3.11b)
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If vertex corrections are neglected, i.e. the vertex function is approximated

by Λσσ′(k; q) = δσ,σ′ in eqs. (3.6) and (3.11), one gets renormalized RPA. It

is, however, noted that neither eqs. (3.9) nor (3.7) hold in the renormalized

RPA. Generic algorithm to include vertex corrections, preserving eqs. (3.9)

and therefore eqs. (3.7), was proposed by Baym and Kadanoff (BK)[38, 39]

on the basis of the skeleton-expansion diagrammatic analysis with respect

to the dressed Green’s function. In principle, the exact self-energy can be

obtained from eqs. (3.6) and (3.11) combined with this BK algorithm[41].

In the following subsections, we introduce two approximations, which

satisfy the Ward identity (3.9). For details of a systematic procedure for

generating a series of such approximations, see Appendix A.

3.2.2 Mean-field and random-phase approximations

When the excess self-energy is neglected, the Ward identity (3.9) gives no

vertex correction, i.e., Λ
(0)
σ,σ′(k; q) = δσσ′ . This leads to MFA for the single-

particle Green’s function and (unrenormalized) RPA for the response func-

tions. From eq. (3.3), the single-particle Green’s function in MFA is given

by

G(0)
σ (k) =

1

iϵl + µ̃σ − εk

. (3.12)

On the other hand, from eq. (3.6b), the one-interaction irreducible response

function in RPA is given by

χ̃
(0)
σσ′(q) ≡ χ̃0(q)δσ,σ′ = −

∫
k

G(0)
σ (k + q)G(0)

σ (k)δσ,σ′ . (3.13)

This approximation is, however, not suitable to the present study of the static

susceptibilities; The uniform (q = 0) response functions are not affected at

all by charge fluctuation developed at a finite wave number q = Q∗, because

the response function is calculated in a closed form for a given q, and has no

mode coupling.
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Figure 3.1: The Feynman diagram (a) for the effective electron-electron in-

teraction V
(0)
σσ′ (q), (b) for the approximate single-particle Green’s function

G
(1)
σ (k), and (c) for the approximate vertex function Λ

(1)
σσ′ . The second term

of r.h.s. in (c) corresponds to the Maki-Thompson-type (MT) vertex cor-

rection, while the sum of the last two terms corresponds to the Aslamazov-

Larkin-type (AL) vertex correction (ΛAL
σσ′ = ΛAL,1

σσ′ + ΛAL,2
σσ′ ).

3.2.3 Inclusion of vertex corrections

We start with the effective interaction of RPA as

V
(0)
σσ′ (q) = vσσ′(q) −

∑
σ1,σ2

vσσ1(q)χ̃σ1σ2(q)V
(0)
σ2σ′(q) , (3.14)

which is expressed by the diagram in Fig. 3.1 (a). By using the effective

interaction, we approximate the Green’s function as

[G(1)
σ (k)]−1 = [G(0)

σ (k)]−1 − Σ̃(1)
σ (k). (3.15)

Σ̃(1)
σ (k) = −

∫
q

G(0)
σ (k + q)V (0)

σσ (q) , (3.16)

where the diagram is shown in Fig. 3.1 (b).
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In the present approximation, it is requested that the Ward identity (3.9)

holds as discussed in § 3.2.1. For this purpose, it is essential to utilize the con-

cept of the Hedin’s formalism constructed by the skeleton diagrams, but we

employ the non-skeleton diagrammatic formalism [40]. The vertex function

Λ
(1)
σσ′(k; q) carrying a momentum q is constructed by replacing the internal

G
(0)
σ′ (k′) line in Σ

(1)
σ (k) by G

(0)
σ′ (k′ + q)G

(0)
σ′ (k′) in all the possible ways. Here,

note that all the internal momenta k′ are replaced so as to conserve the

wave numbers and the Matsubara frequencies at all the internal and exter-

nal vertices. The diagram for the vertex function thus obtained is shown

in Fig. 3.1 (c). By this procedure, we can prove various types of the Ward

identity, one of which is the Ward identity (3.9), i.e.,

Λ
(1)
σσ′(k; 0) = δσσ − ∂Σ̃

(1)
σ (k)

∂µ̃σ′
. (3.17)

This relation is proved by seeing the fact that the differential operation in

the second term on the right hand side is equivalent to an operation in which

one first plucks out the internal G
(0)
σ′ (k′) line in Σ̃

(1)
σ (k) in all the possible

ways and then replaces it with G
(0)
σ′ (p)2; this operation is nothing but the

vertex insertion described above for q = 0.

The vertex corrections can be written as the sum of the two contributions

as

Λ
(1)
σσ′(k; q) = δσ,σ′ + ΛMT(k; q)δσ,σ′ + ΛAL

σσ′(k; q) . (3.18a)

The Maki-Thompson (MT) type vertex correction ΛMT(k; q) is written as

ΛMT(k; q) =

∫
q1

V (0)
σσ (q1)G

(0)
σ (k + q1 + q)G(0)

σ (k + q1) , (3.18b)

while the Aslamazov-Larkin (AL) type vertex correction ΛAL
σσ′(k; q) is written

as

ΛAL
σσ′(k; q) =

∫
q1

G(0)
σ (k − q1)V

(0)
σσ′ (q1)V

(0)
σσ′ (q1 + q)

× [ γσ′(q1; q) + c.c. ] , (3.18c)
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Figure 3.2: The Feynman diagrams for the one-particle irreducible response

function (a) without vertex corrections, (b) with the Maki-Thompson type

vertex corrections and (c) with the Aslamazov-Larkin type vertex corrections.

The thin and thick solid lines with arrows represent the bare and dressed

Green’s functions, G
(0)
σ (k) and G

(1)
σ (k), respectively. The thick wavy lines

represent the effective electron-electron interaction V
(0)
σσ′ (q).

where γσ(q1; q) is the fermion loop with three vertex insertions carrying mo-

menta q1, q and −q1 − q given by

γσ(q1; q) = −
∫

p

G(0)
σ (p)G(0)

σ (p + q1)G
(0)
σ (p + q1 + q) . (3.18d)

The one-interaction irreducible part χ̃
(1)
σσ′(q) in the present approximation

is given as

χ̃
(1)
σσ′(q) = −

∫
k

G(1)
σ (k + q)G(1)

σ (k)Λ
(1)
σσ′(k; q) . (3.19)

There are three contributions in χ̃
(1)
σσ′(q):

χ̃
(1)
σσ′(q) = χ̃MF(q)δσ,σ′ + χ̃MT(q)δσ,σ′ + χ̃AL

σσ′(q) . (3.20)

The Feynman diagram for each component is shown in Fig. 3.2. Note that

these diagrams are a little different from the usual ones appearing in previous

literature; in both MT and AL correction, two of the Fermion lines are dressed
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Green’s functions, and the other are bare Green’s functions. In the non-

skeleton diagrammatic formalism, only this combination guarantees the exact

relation (3.7) between the isothermal susceptibilities and the q-limit of the

response functions through the Ward identity (3.9). The approximate spin

and charge response functions are then calculated by

χNN(q) =
1

2

∑
σ,σ′

χσσ′(q), (3.21a)

χSzSz
(q) =

1

2

∑
σ,σ′

σσ′χσσ′(q), (3.21b)

These response functions contain a leading contribution of nontrivial vertex

corrections and introduce mode coupling between charge and spin fluctua-

tions with different wave numbers. Since the MT and AL type vertex correc-

tions has a crucial role near a second-order transition point [35], it is expected

that physically comprehensive results are obtained at this level of approxi-

mation. In the next section, we study a role of these vertex corrections near

the charge-ordering transition based on this approximation.

Finally, we mention extension of the present approximation. We can

construct the next level of approximation by making the next self-energy from

the lastly obtained vertex function. Performing this procedure iteratively,

exact series of diagrams for all the correlation functions are generated [41, 45],

although it is practically difficult to sum up them. Details of this formal

extension are given in Appendix.
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3.3 Numerical results and discussions

3.3.1 Model

In this section, we consider a single-band EHM with the nearest-neighbor

Coulomb potential for a 2D square lattice for a simple demonstration of

charge fluctuation effect on the susceptibilities. The Hamiltonian is given as

HEHM =
∑
k,σ

(εk − µ)c†kσckσ +
U

2

∑
i,σ

niσniσ̄ + V
∑
〈ij〉

ninj. (3.22)

The band dispersion is given as εk = 2t(cos(kxa) + cos(kya)), where t is a

transfer integral between nearest-neighbor sites and a is a lattice constant. U

and V are coupling constants for the on-site and nearest-neighbor repulsive

Coulomb interactions, respectively. µ is determined to fix n =
∑

σ nσ = 3/2

by using Eq. (3.2) and σ̄ denotes the opposite spin of σ. In the following, we

set t = 1, a = 1 and kB = 1.

In this model, the bare Coulomb interactions are represented as

vσσ(q) = V (q), (3.23a)

vσσ̄(q) = U + V (q), (3.23b)

where V (q) = 2V (cos qx + cos qy). In our approximation described in 3.2.3,

we obtain static charge and spin susceptibilities as

χ
NN

(q) =
χ̃

NN
(q)

1 + vc(q)χ̃
NN

(q)
, (3.24a)

χ
SzSz

(q) =
χ̃

SzSz
(q)

1 − Uχ̃
SzSz

(q)
, (3.24b)

where vc(q) = U + 2V (q) has been introduced for usefulness. The one-

particle irreducible response functions χ̃
NN

(q) and χ̃
SzSz

(q) are calculated

from χ̃
(0)
σσ′(q) = χ̃0(q)δσ,σ′ for RPA and from χ̃

(1)
σσ′(q) = χ̃SC(q)δσ,σ′+χ̃MT(q)δσσ′+

χ̃AL
σσ′(q) for the approximation with the leading vertex corrections. In the rest

of this thesis, the latter approximation, which is abbreviated as ”the 1-st level

of non-skeleton conserving approximation (1NSCA) ”, is used if not specified
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Figure 3.3: Phase diagram on the plane of T and V at U = 3. The dashed

line and solid line represent the CO transition line determined by RPA and

1NSCA, respectively.

in the text. In order to calculate the convolution form, we use the Fast-

Fourier-Transform (FFT) algorithm. The first Brillouin zone is divided into

64× 64 meshes. The frequency sum is terminated at ϵc whose value is about

40 times as large as the band-width W = 8t for T = 0.1. In this section, we

first determine the phase diagram on the (V, T ) plane. Next, we calculate

the V -dependence for uniform spin and charge susceptibilities.

3.3.2 Phase diagram

In the following, we fix U = 3, at which a spin density wave (SDW) in-

stability is not observed for T ≥ 0.05. The phase diagram on the (V, T )

plane at U = 3 is shown by a solid line in Fig. 3.4, where a charge-ordering

transition is determined by the divergence of charge susceptibility, i.e., by

1 + vc(q)χ̃
NN

(q) = 0. At high temperatures, the Fermi surface is ob-

scure, and q-dependence of χ̃
NN

(q) is weak. As a result, checkerboard-type

charge-ordering with the wave number q = Qcb = (π, π) occurs mainly

by q-dependence of vc(q). With decreasing temperatures, the Fermi sur-
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Figure 3.4: Charge susceptibilities obtained by 1NSCA for (T, V ) =

(0.05, 1.7), (0.1, 1.7), (0.2, 1.6), (0.3, 1.5) at U = 3. The peak of charge sus-

ceptibility continuously shifts from Qcb = (π, π) to Qic ≈ (3π/4, 3π/4) for

T < 0.3.

face becomes clear, and q-dependence of χ̃
NN

(q) becomes strong. Below

T ∼ 0.2, the wave number of divergence of the charge susceptibility changes

from q = Qcb to q = Qic ≈ (3π/4, 3π/4), where the wave number Qic of

incommensurate charge-ordering is determined by both vc(q) and χ̃
NN

(q).

We show the charge susceptibility in the metallic phase near charge-ordering

transition in Fig. 3.4. In the figure, it can be seen that the peak of the

charge susceptibility shifts from q = Qcb to q = Qic ≈ (3π/4, 3π/4) as the

temperature decreases. In the phase diagram, reentrant transition (metallic

→ CO → metallic with decreasing temperatures) is observed. This is due to

nonmonotonic temperature-dependence of χ
NN

(Qcb). Because Qcb is close to

Qic, χ
NN

(Qcb) first increases by broadening of the peak of χ̃
NN

(q) at q = Qic

with increasing temperatures till T ≈ 0.5, and decreases with increasing tem-

peratures more. As shown by the dashed line in Fig. 3.3, the overall feature of

divergence of χ
NN

(q) including reentrant behavior are also observed in RPA

[29, 33]. It is noted that even considering the vertex-corrections, the reen-

trant charge-ordering behavior remains[46]. The vertex corrections suppress
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Figure 3.5: Static charge and spin susceptibility for T = 0.1 at U = 3.

The dotted line and solid line represent static charge susceptibility and spin

susceptibility, respectively. The incommensurate charge-ordering transition

occurs at V = 1.788.

the CO transition especially at high temperatures because electron-electron

scattering becomes strong due to obscureness of the Fermi surface. It is

expected that this suppression of the CO transition may be weaken when

the higher-order vertex corrections are considered. To include these terms,

we have to go beyond the present approximation by, e.g., a higher level of

non-skeleton conserving approximation (NSCA) discussed in Appendix A.

3.3.3 Static response functions

Let us move on the main result of this chapter. The uniform susceptibilities

χs and χc calculated by RPA and the 1NSCA are shown in Fig. 3.5, where the

charge-ordering transition occurs at V = 1.788 in the 1NSCA for T = 0.1

and U = 3. As shown in Fig. 3.5, χs calculated by the 1NSCA increases

towards the charge-ordering transition. It is noted that χs is independent of

V in RPA as shown in Fig. 3.5 since χ̃
SzSz

(q) = χ0(q) in Eq. (3.24b) does

not include V . Therefore, this characteristic enhancement of χs is caused by
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the vertex corrections. On the other hand, χc depends on V in both RPA

and the 1NSCA as shown in Fig. 3.5, where the effect of vertex correction

is small as indicated by slight change between two approximations. In the

following subsections, we discuss the effect of vertex correction on χs and χc

by investigating the V -dependence.

Uniform spin susceptibility

In the 1NSCA, the uniform spin susceptibility is calculated as

χs =
1

χ̃
SzSz

(0)−1 − U
, (3.25)

where χ̃
SzSz

(0) = χ̃SC
s +χ̃MT

s +χ̃AL
s is obtained as a sum of three contributions,

from χ̃SC, χ̃MT, and χ̃AL
σσ′ . From eq. (3.25), it is clear that the V -dependence

of χs comes only from χ̃
SzSz

(0) for fixed U . Therefore, χs is enhanced to-

ward the charge-ordering transition by increase of χ̃
SzSz

(0) for positive U .

In Fig. 3.6, the V -dependence of three components, χ̃SC
s , χ̃MT

s , and χ̃AL
s are

shown by subtracting their values for V = 0, respectively. It is found that,

with increasing V , χ̃AL
s and χ̃MT

s increase, while χ̃SC
s decreases due to the

self-energy effects.

We first discuss the behavior of χ̃MT
s . If we consider the leading correc-

tion proportional to V and replace the dressed Green’s function by the bare

Green’s function, χ̃MT
s is obtained by the integral of the interaction on the

Fermi surface SF :

χ̃MT
s ≈ ρ2

∫
SF

dkdk′V (k − k′)

= ρ2〈V (q)〉SF
. (3.26a)

The sign of this correction depends on both V (q) and the shape of the Fermi

surface. In Fig. 3.7, we show the change of the Fermi surface and the cor-

responding averaged interaction 〈V (q)〉 when the filling factor n is changed.

In the present simple model with nearest-neighbor Coulomb interaction on a

square lattice, 〈V (q)〉SF
is positive for an arbitrary filling factor n as shown in

the figure. This is because the largest contribution comes from q = k−k′ ∼ 0
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Figure 3.6: The V -dependence of irreducible static response functions is

shown. for T = 0.1 at U = 3. The charge-ordering transition occurs at

V = 1.788 in the 1NSCA.

in the integral of eq. (3.26a). Therefore, χ̃MT
s is expected in general to in-

crease as V increases; this behavior is consistent with the result in Fig. 3.6.

Next, we discuss the behavior of χ̃AL
s in terms of the effective interaction

V
(0)
σσ′ (q) = V RPA

σσ′ (q). Near charge-ordering transition, the static component

of the effective interaction is dominant. Therefore, χ̃AL
s is approximately

proportional to the effective interaction,

1

2

∑
σ,σ′

σσ′V RPA
σσ′ (Q∗)2 = V RPA

c (Q∗)V RPA
s (Q∗). (3.27)

Here, V RPA
c (q) and V RPA

s (q) are calculated as

V RPA
c (q) =

vc(q)

1 + vc(q)χ̃0(q, iωn = 0)
, (3.28a)

V RPA
s (q) =

−U

1 − Uχ̃0(q, iωn = 0)
, (3.28b)

and Q∗ represents the peak momentum of V RPA
c (q). It is remarkable that

V RPA
c (Q∗) near the CO state is negative because of vc(Q

∗) < 0, while
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Figure 3.7: (a) The n dependence of the Fermi surface for the non-interacting

system. (b) The n dependence of 〈V (q)〉SF
. With increasing n, the value

of 〈V (q)〉SF
increases till n ≈ 1.9. The sharp decrease of 〈V (q)〉SF

above

n ≈ 1.9 is due to the fact that the Fermi surface becomes much small. Note

that the value of 〈V (q)〉 for 0 ≤ n ≤ 1 is the same as the one for 1 − n.

V RPA
s (Q∗) is always negative for positive U in the absence of magnetic insta-

bility. Therefore, χ̃AL
s increases toward the charge-ordering transition; This

behavior is consistent with the result in Fig. 3.6.

In conclusion, the charge fluctuation developed near charge-ordering tran-

sition increases the spin susceptibility through the vertex corrections; the

behavior of χs in Fig. 3.5 can be understood qualitatively by increase of χ̃MT
s

and χ̃AL
s .

Uniform charge susceptibility

The uniform charge susceptibility is calculated in the 1NSCA as

χc =
1

χ̃
NN

(0)−1 + U + 8V
, (3.29)

where χ̃
NN

(0) = χ̃SC
c +χ̃MT

c +χ̃AL
c in the 1NSCA. In contrast to χs, the charge

susceptibility is suppressed by V appearing in the denominator even in the
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RPA level (χ̃
NN

(0) = χ̃0(0)). In the present calculation, V -dependence of χc

through the vertex correction is weak as indicated from the result in Fig. 3.5.

There remains, however, a possibility that the vertex correction due to the

charge fluctuations affects the behavior of χc. Since χ̃MT
c is equal to χ̃MT

s , we

focus on the behavior of χ̃AL
c . By using the same approximation as for χ̃AL

s

in the previous subsection, χ̃AL
c is found to be proportional to a square of the

effective interaction

1

2

∑
σ,σ′

V RPA
σσ′ (Q∗)2 =

[
V RPA

c (Q∗)
]2

+
[
V RPA

s (Q∗)
]2

. (3.30)

As a result, both χ̃MT
c and χ̃AL

c increase as V increases toward the charge-

ordering transition. Therefore, χc is expected to increase when the vertex

correction changes considerably to overwhelm the increase of 8V in the de-

nominator in eq. (3.29). In order to study this possibility in details, the

charge fluctuation should be fully treated beyond the present approxima-

tion. This problem will be studied in the next chapter.
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3.4 Discussion

3.4.1 Relation to the Fermi liquid theory

In this subsection, the spin and charge susceptibilities are studied up to the

leading-order correction derived by systematic inclusion of the vertex func-

tion. We expect that the present result gives a correct behavior of the suscep-

tibilities toward the charge-ordering transition until the charge fluctuation

is not developed so much. Just near the transition, however, the higher-

order vertex correction becomes relevant due to strong charge fluctuation.

Although the treatment of the higher-order correction is beyond the scope

of this chapter, it is feasible to summarize its effect in terms of the Fermi

liquid theory, which is a natural description of the metallic phase. By using

a standard microscopic derivation of the isotropic Fermi liquid (FL), [43, 44]

the irreducible part of the uniform susceptibilities is written as

χc =
χ̃NN(0)

1 + vc(0)χ̃NN(0)
, (3.31a)

χs =
χ̃

SzSz
(0)

1 + vs(0)χ̃
SzSz

(0)
. (3.31b)

Here, we define vc(0) and vs(0) as the spin symmetric and spin anti-symmetric

parts of the bare Coulomb interaction, respectively. In FL theory, χ̃c and χ̃s

are given as

χ̃
NN

(0) =
ρ

1 + ρf̃ s
0

, (3.32a)

χ̃
SzSz

(0) =
ρ

1 + ρf̃a
0

, (3.32b)

where f̃ s
0 and f̃a

0 are the spin symmetric and spin anti-symmetric parts

of the interaction for the quasi-particle based on MF and ρ is the density

for the quasi-particle on the Fermi surface. Using Eq. (3.32a) and (3.32b),

Eq. (3.31a) and (3.31b) are rewritten as

χc =
ρ

1 + ρ(vc(0) + f̃ s
0 )

=
ρ

1 + ρf s
0

, (3.33a)

χs =
ρ

1 + ρ(vs(0) + f̃a
0 )

=
ρ

1 + ρfa
0

, (3.33b)
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where f s
0 = vc(0) + f̃ s

0 and fa
0 = vs(0) + f̃a

0 are the spin symmetric and

spin anti-symmetric parts of the quasi-particle interaction. Our formalism

corresponds to approximate |ρf̃ s
0 |, |ρf̃a

0 | ≪ 1, where f̃ s
0 = fMT

0 + f s,AL
0 and

f̃a
0 = fMT

0 + fa,AL
0 . In this limit, χ̃c and χ̃s are approximated as follows

χ̃c ≈ ρ(1 − ρf̃ s
0 ) = ρ(1 − ρ(fMT

0 + f s,AL
0 )), (3.34a)

χ̃s ≈ ρ(1 − ρf̃a
0 ) = ρ(1 − ρ(fMT

0 + fa,AL
0 )). (3.34b)

From the discussion given in sec. 3.3.3, we find that all of fMT
0 , f s,AL

0 and

fa,AL
0 decrease with the increase of charge fluctuations for a single band EHM

for a square lattice model.

In the case of a single-band Hubbard model, a SDW state appears with in-

creasing U . To consider the fact that the contribution of AL term is expected

to dominate in the vicinity of a SDW state, the uniform charge susceptibility

increases near a SDW state, while the spin susceptibility decreases. On the

other hand, in the case of a single-band EHM with nearest-neighbor Coulomb

potential, the uniform charge susceptibility decreases near a CO state, while

the spin susceptibility increases as discussed in 3.3.3. However, as discussed

in 3.3.3, it is noted that the charge fluctuation near a CO state is not fully

taken into account and the bare Coulomb potential becomes dominant for

calculating the uniform charge susceptibility in this approximation. There-

fore, there is a possibility that the uniform charge susceptibility increases in

the vicinity of a CO state if the charge fluctuation is fully taken into account.
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3.5 Summary

In this chapter, we have developed a simple approximate method including

vertex corrections which satisfy the identities between the isothermal sus-

ceptibilities and the so-called q-limit of the response functions. This method

gives us a systematic phase diagram for the second-order transition and the

isothermal susceptibilities by using the same response function as it should

be. We showed that the reentrant charge-ordering transition, which has been

observed in RPA[29], remains even though the vertex corrections are taken

into account.

The notable point for including vertex corrections is that the uniform

spin susceptibility increases toward the charge-ordering transition point. To

interpret this tendency, we roughly evaluate the vertex-correction terms and

show that this enhancement is due to decrease fa
0 from a viewpoint of Lan-

dau’s Fermi Liquid theory. The experimental data such as θ-(BEDT-TTF)2

RbZn4[4] and β-(meso-DMBEDT-TTF)2 PF6[20] show that the spin suscep-

tibility has a broad hump at the charge-ordering transition. This tendency

that the spin susceptibility increases toward a CO transition point from a

metallic state is consistent with our results.

On the other hand, the uniform charge susceptibility decreases toward the

charge-ordering transition point. This is because that though fMT
0 and fAL

0

decrease, the bare Coulomb potential becomes dominant and f s
0 increases

with increasing V . However, there is the possibility that the uniform charge

susceptibility is enhanced, if the charge fluctuation is fully treated.
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Chapter 4

Negative compressibility

induced by large charge

fluctuations

4.1 Introduction

In Chapter 3, we have constructed a new diagrammatic approach based

on the non-skeleton conserving approximation including both the bare and

dressed Green’s function. We applied this method to the EHM to evaluate

the first correction of the response function with respect to development of

charge fluctuations. This correction consists of the self-energy correction and

the vertex corrections of the Maki-Thompson type and the Aslamazov-Larkin

type. This calculation is suitable to study of the effect of charge fluctuation

on the response function toward CO transition. This approximation, how-

ever, lacks an important feedback effect of charge fluctuations onto the vertex

correction of the response function.

In this chapter, we employ the Baym-Kadanoff conserving approxima-

tion (BKCA) [38, 39]. In particular, the following two aspects of the BKCA

should be noted in the present context: (1) The effective interaction Veff(q)

and the self energy Σ(k) are self-consistently determined within the skele-

ton diagrammatic conserving approximation. By using the Green’s function

thus obtained, the response function can be calculated for an arbitrary wave
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number neglecting vertex corrections. This way of calculation of the response

function includes Renormalized Random-Phase Approximation (RRPA) and

Fluctuation Exchange (FLEX) approximation. (2) For a limited wave num-

ber q, we can calculate the response function including all the vertex cor-

rections corresponding to BKCA by derivative of the particle number with

respect to the external potential[39]. Therefore, it is expected that BKCA

is suitable to include the divergent increase of the effective interaction at q

= Q∗ as the feedback effect onto vertex corrections near the charge-ordering

critical point. For example, This aspect of the BKCA was applied to the

problem of the divergent compressibility near the antiferromagnetic critical

point for a 2D Hubbard model[36]. The effects of critical fluctuations on

the superconductivity (SC) transition have also been well studied for a 2D

extended Hubbard model by Onari et al. [32] in FLEX approximation. They

have determined a CDW and SDW state by RRPA and discussed SC tran-

sition through charge and spin fluctuations. However, the effects of charge

fluctuations on the uniform susceptibilities have not been investigated.

FLEX approximation is suitable to treat a magnetic transition, since

ladder-type diagrams are included and the contribution of longitudinal spin

susceptibilities is equal to that of transverse spin susceptibility. However,

it is expected that the contribution of ladder-type diagrams is weak for the

charge-ordering transition, since no singularity for magnetic property is ex-

pected. Actually, it is indicated that the symmetry of the SC state obtained

by FLEX approximation coincides with RPA in the region where charge fluc-

tuation is strong and spin fluctuation is weak [30]. With this observation of

the validity if RPA for the CO transition, we employ RRPA [38] which sub-

tracts ladder-type diagrams from FLEX approximation to determine the CO

transition. The uniform (q = 0) charge susceptibility can be calculated by

χc = dn/dµ. We call this approximation of the response function as simply

the Shielded Interaction Approximation (SIA). The response function of SIA

satisfies the compressibility sum rule dn/dµ = limq→0 χNN(q, 0). This is the

crucial difference between SIA and RRPA for the calculations of the response

functions. In the succeeding sections, we give the precise definition of SIA,

and calculate the isothermal spin susceptibility and compressibility in SIA.
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4.2 Formulation

4.2.1 Baym-Kadanoff conserving approximation

In this subsection, we briefly review BKCA. The advantage of the approxi-

mation based on Baym-Kadanoff scheme is to conserve the particle number,

energy, momentum and angular momentum[38]. Baym constructed a simple

formalism to procedure BKCA[39]. In this formalism, we first choose the

Luttinger-Ward functional Φ[G], where G(q) is the dressed Green’s function

given as

G−1
σ (q) =

[
G0

σ(q)
]−1 − Σσ(q). (4.1)

Here, we use the abbreviation q ≡ (q, iωn), G0
σ(q) is the bare Green’s function

and the self-energy Σσ(q) is obtained by the following relation,

Σσ(q) =
δΦ[G]

δGσ(q)
. (4.2)

For convenience, we define Σ̃σ(q) as the self-energy subtracting the Hartree

term

Σ̃σ(q) = Σσ(q) − ΣHartree
σ . (4.3)

The vertex function Λσ1σ2(k1; q) is defined as

Λσ1σ2(k1; q) = δσ1σ2 +
∑
k3,σ3

K̃σ1σ3(k1, k3)Gσ3(k3)Gσ3(k3 + q)Λσ3σ2(k3; q) (4.4)

with the irreducible kernel K̃σσ′(q1; q2) which is given by

K̃σ1σ2(q1, q2) =
δΣ̃σ1(q1)

δGσ2(q2)
. (4.5)

Then, the response function is given as

χσσ′(q) = χ̃σσ′(q) −
∑
σ1,σ2

χ̃σσ1(q)vσ1σ2(q)χσ2σ(q), (4.6)

where vσ1σ2(q) represents the electron-electron interaction and χ̃σσ′(q) is de-

fined as

χ̃σσ′(q) = −β−1
∑

k

Gσ(k + q)Gσ(k)Λσσ′(k; q). (4.7)
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It is noted that this formulation satisfies the Ward identity given as Eq. (3.9).

For convenience, we write this relation again as follows:

Λσ1σ2(k1; 0) = δσ1σ2 −
∂Σ̃σ1(k)

∂µ̃σ2

, (4.8)

where µ̃σ = µ+hσ−ΣHartree
σ is the chemical potential absorbing the Hartree

term. We can see that Eq. (4.4) satisfies the Ward-identity by rewriting
∂Σ̃σ1 (k)

∂µ̃σ2
in Eq. (4.8) as

∂Σ̃σ1(k)

∂µ̃σ2

=
∑
k3,σ3

∂Gσ3(k3)

∂µ̃σ2

∂Σ̃σ1(k)

∂Gσ3(k3)

= −
∑
k3,σ3

Gσ3(k3)
2

[
δσ2,σ3 −

∂Σ̃σ3(k3)

∂µ̃σ2

]
Kσ1σ3(k, k3)

= −
∑
k3,σ3

K̃σ1σ3(k, k3)Gσ3(k3)
2Λσ3σ2(k3; 0). (4.9)

Finally, we check that the the compressibility and isothermal spin sus-

ceptibility obtained from the thermodynamic potential coincides with the

susceptibilities defined by Eq. (4.6)[36]. Using Φ[G], the thermodynamic

potential Ω is represented as

Ω = −β−1
∑

k,ωn,σ

eiωnη
{
ln

[
−G−1

σ (k, iωn)
]
+ Gσ(k, iωn)Σσ(k, iωn)

}
+ Φ[G],

(4.10)

where η is a positive infinitesimal. The electron number nσ is obtained by

differentiating Ω with respect to the chemical potential µσ as

nσ = − ∂Ω

∂µσ

= β−1
∑
k,ωn

Gσ(k, iωn)eiωnη. (4.11)

Then, we can obtain the susceptibility χσσ′(0) as

χσσ′(0) =
∂nσ

∂µσ′
= −β−1

∑
k,ωn,σ

eiωnηG2
σ′(k, iωn)

[
δσ,σ′ − ∂Σσ(k, iωn)

∂µσ′

]
. (4.12)
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It is seen that Eq. (4.11) and (4.12) coincide with exact relations as described

in sec. 3.2. The isothermal charge and spin susceptibility are defined as

χc =
1

2

∑
σ,σ′

∂nσ

∂µσ′
=

1

2

∑
σ,σ′

χσσ′(0), (4.13)

χs =
1

2

∑
σ,σ′

σσ′ ∂nσ

∂µσ′
=

1

2

∑
σ,σ′

σσ′χσσ′(0), (4.14)

respectively. In this way, we can obtain the compressibility and isothermal

spin susceptibility which satisfy exact relations. It is noted that the vertex

corrections are included through the differentiating Σ with respect to µ or

δh.

4.2.2 Shielded interaction approximation

In the vicinity of charge-ordering transition, charge density fluctuations be-

come important. To consider this effect, we choose the Luttinger-Ward func-

tional Φ[G] as the sum of all bubble ring-diagrams as shown in Fig. 4.1 (a).

Then, the self-energy Σ(q) in Fig. 4.1 (b) is given by Eq. (4.2) as

Σσ(q) =
∑
σ′

vσσ′(0)nσ′ + β−1
∑

k

V SIA
σσ (k)Gσ(k + q), (4.15)

where the shielded interaction V SIA
σσ (k) shown in Fig. 4.1 (c) is defined as

V SIA
σσ (q) = −vσσ(q) +

∑
σ1σ2

vσσ1(q)χRRPA
σ1σ2

(q)vσ2σ(q). (4.16)

Here, vσσ(q) = V (q) and vσσ̄(q) = U + V (q) are the wave representation

of the Coulomb potential between the same and different spins for EHM,

respectively. The susceptibility χRRPA
σσ′ (q) is given as

χRRPA
σσ′ (q) = χ̃SC

σσ(q) −
∑
σ1,σ2

χ̃SC
σσ1

(q)vσ1σ2(q)χRRPA
σ2σ′ (q), (4.17)

where χ̃SC
σσ′(q) (SC means the Self-energy Correction) is the irreducible sus-

ceptibility for the dressed Green’s function,

χ̃SC
σσ′(q) = −β−1

∑
k

Gσ(k)Gσ(k + q)δσ,σ′ . (4.18)
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Figure 4.1: The Feynman diagrams of the SIA: (a) the Luttinger-Ward func-

tional ΦSIA, (b) the self-energy Σ, (c) the shielded interaction V SIA
σσ , (c) the

irreducible Kernel K̃ and (d) the vertex functions Λ.
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In this thesis, the chemical potential µ is determined to fix the electron

number n =
∑

σ nσ as 3/2 by using Eq. (4.11) within the accuracy |n−nfix| ≤
10−8. We solved coupled equations Eq. (4.1) and (4.15) iteratively until

satisfying the convergence condition for each k and σ within the accuracy

|Σ(i+1)
σ (k) − Σ

(i)
σ (k)|

|Σ(i+1)
σ (k)|

≤ 10−6, (4.19)

where i denotes the i-th iteration.

In SIA, the divergence of effective interaction V SIA
σσ (q) reflects on the self-

energy Σ(q). We investigate the influence of the charge fluctuations through

this feedback effect. The divergence point of V SIA
σσ (q) is equivalent to that of

χRRPA
NN

(q) defined as

χRRPA
NN

(q) =
1

2

∑
σσ′

χRRPA
σσ′ (q). (4.20)

Hereafter, we define the charge-ordering transition point as the divergence

point of χRRPA
NN

(q) at some finite q. It is noted that the sum rule

χc ≡
∂n

∂µ
= lim

q→0
χRRPA

NN
(q) (4.21)

does not hold in RRPA, since the vertex corrections required in BKCA are

not taken into account. Uniform charge susceptibility, however, can be calcu-

lated by direct derivative of the particle number with respect to the chemical

potential (see l.h.s in Eq. (4.21)). Charge compressibility χc thus obtained

should include not only Maki-Thompson (MT) and Aslamazov-Larkin (AL)

type vertex corrections but also higher-order ones. Likewise, χs obtained by

differentiating m with respect to δh also includes appropriate vertex correc-

tions. In the next section, we investigate the effect of charge fluctuations on

χc and χs in this way.
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4.3 Numerical results

In this section, we take a lattice size N = 642 and the Matsubara frequency

for fermions −(2Nc−1)πT ≤ ωn ≤ (2Nc−1)πT with Nc = 211 above T = 0.1.

While, we take N = 1282 and Nc = 211 below T = 0.1.

4.3.1 Transition point determined by RRPA

In the case of h = 0, χ̃SC
σσ′ does not depend on the spin indices and we can

define χ̃SC(q) ≡ χ̃SC
σσ′(q). Then, the charge and spin susceptibility obtained

by RRPA at SIA level is rewritten as

χRRPA
NN

(q) =
∑
σσ′

χRRPA
σσ′ (q) =

χ̃SC(q)

1 + [U + 2V (q)] χ̃SC(q)
, (4.22)

χRRPA
SzSz

(q) =
∑
σσ′

σσ′χRRPA
σσ′ (q) =

χ̃SC(q)

1 − Uχ̃SC(q)
. (4.23)

We determine the charge-ordering transition by the divergence of χRRPA
NN

(q, 0)

at some finite q.

First, we see the momentum dependence of χRRPA
NN

(q, 0) and specify the

wave vector Q∗, where χRRPA
NN

(q, 0) has maximum value. Fig. 4.2 (a) shows

the momentum dependence of χRRPA
NN

(q, 0) and χRRPA
SzSz

(q, 0) at U = 4 and

T = 0.1. Two peaks of χRRPA
NN

(q, 0) are due to the anisotropic wave depen-

dence of V (q) and that of the Fermi surface. The former gives a peak at

q = Qcb = (π, π) and the latter at q = Qinc = (3
4
π, 3

4
π). It is seen that

χRRPA
NN

(Qcb, 0) is enhanced with increasing V in this case. To determine the

divergent point of χRRPA
NN

(Qcb, 0), we calculate V -dependence of χRRPA
NN

(Qcb, 0)

as shown in Fig. 4.2 (b) and find that charge-ordering transition occurs at

V ≈ 2.066. We also check the V -dependence of the maximum value of

χRRPA
SzSz

(q, 0). With increasing V , χRRPA
SzSz

(q, 0) decreases. Therefore, it is seen

that the spin fluctuations are suppressed by the charge fluctuations.
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Figure 4.2: (a) The wave dependence of χRRPA
NN

(q, 0) and χRRPA
s (q, 0) at

U = 4 and T = 0.1. (b) The V dependence of Max
[
χRRPA

NN
(q, 0)

]
and

Max
[
χRRPA

s (q, 0)
]

at U = 4 and T = 0.1. The charge-ordering transition

occurs about V ≈ 2.066.

4.3.2 Response functions

In the previous subsection, we determine the charge-ordering transition point

by RRPA. In this subsection, we investigate the effect of the charge fluctu-

ations on the isothermal spin susceptibility χs and compressibility χc. To

obtain χc, we utilize the relation Eq. (4.12). In this method, χc includes

vertex corrections through ∂Σ
∂µ

as explained §4.2.2. Likewise, we calculate χs

by differentiating m with respect to δh to include the vertex corrections.

Isothermal spin susceptibility

To obtain χs, we numerically apply a small magnetic field δh and calculate

magnetization m =
∑

σ σnσ by the following relation,

nσ = β−1
∑
k,ωn

Gσ(k, iωn)eiωnη. (4.24)

Fig. 4.3 (a) shows h-dependence of m at V = 1 (red line), 2 (green line) and

2.05 (blue line). It is seen that m varies linearly near δh ≈ 0 for each V .
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Figure 4.3: (a) Magnetic field h dependence of the magnetization m at U = 4

for T = 0.1. (b) δn dependence of δµ̃ = δµ − ΣHartree at U = 4 for T = 0.1,

where we define δn = n−1.5 and δµ = µ−µfix. µfix is the chemical potential

determined to fix n = 1.5. The divergence of χc occurs at V ≈ 2.064.

Therefore, we calculate χs by δm/δh, where δh = 10−4.

The blue line in Fig. 4.4 (a) represents χ0/χs at U = 4 for T = 0.1,

where χ0 is the compressibility for non-interaction system. With decreasing

δV ≡ VCO − V , the charge fluctuations become large, where VCO represents

the charge-ordering transition point. Though the enhancement of charge

fluctuations near VCO is reflected on χs through vertex corrections, anomalous

behavior is not observed and χ−1
s monotonically decreases with increasing

V . This tendency qualitatively coincides with the 1NSCA as discussed in

Chapter 3.

Isothermal charge susceptibility

To obtain χc, we numerically increase the electron number density n = 3/2

by a small amount δn. Then, the chemical potential µ slightly changes from

µ to µ + δµ. Fig. 4.3 (b) shows δn dependence of the chemical potential

absorbing Hartree term δµ̃ = δµ − δΣHartree for V = 1.5 (red line), 2 (green

line) and 2.06 (blue line). It is seen that δn is proportional to δµ̃ near δµ̃ ≈ 0
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Figure 4.4: V -dependence of χ0/χc and χ0/χs at U = 4 for T = 0.1 in the

range (a) 0 ≤ VCO − V ≤ 1 and (b) 0 ≤ VCO − V ≤ 0.1. Here, VCO ≈ 2.066

is defined as the charge-ordering transition point determined by RRPA. The

red and green line represent χ0/χc and χ0/χs, respectively. The divergence

of χc occurs at V ≈ 2.060.

for each V . Therefore, we calculate χ̃c = δn/δµ̃ for δn = 10−4 and obtain χc

by χ−1
c = χ̃−1

c + U + 2V (0).

The red line in Fig. 4.4 (a) and (b) represents χ0/χc at U = 4 for T = 0.1.

With decreasing δV from δV = 1, χ−1
c first increases till δV ≈ 0.3. This result

coincides with the result of 1NSCA as discussed in Chapter 3. In this region,

the contribution of the bare Coulomb potential V to the compressibility

is dominant and the compressibility decreases. Since the enhancement of

V SIA
σσ (Qcb, 0) near VCO is taken into account in SIA, it is expected that the

contribution of the vertex corrections to the compressibility is dominant in

the vicinity of charge-ordering transition. This tendency is appeared below

δV ≈ 0.3 and χ−1
c becomes 0 before charge-ordering transition. This indicates

that the electronic system becomes unstable due to charge fluctuations.

Next, we determine the phase diagram on the V -T plane obtained from

divergence of the response function χRRPA
NN

(Q∗, 0) responsible for a charge-

ordering transition and the uniform charge compressibility χc. The phase

diagram on the V -T plane for U = 4 is shown in Fig. 4.5. The blue points
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Figure 4.5: The phase diagram in the V − T plane for U = 4 with a uni-

form metallic and a charge ordered state determined by RRPA. The blue

points represent the charge-ordering transitions. The red points represent

the divergence points of static charge susceptibility. An end point appears

at T ≈ 0.401.

represent the charge-ordering transition points on which χRRPA
NN

(Q∗, 0) di-

verges. This result shows reentrant transition (metallic → CO → metallic

with decreasing the temperature) in a finite region of V at RRPA level. This

reentrant transition is also observed in both 1NSCA and RPA as shown in

the previous chapter. The characteristic transition temperature obtained

here is, however, lowered from RPA (or 1NSCA). From viewpoint of Fermi

liquid, the self-energy correction included in RRPA is expected to lower the

transition temperature by suppression of the response function at finite tem-

peratures through both strong electron scattering (the imaginary part of the

self-energy) and mass renormalization (the real part of the self-energy). In

order to study this effect more quantitatively, careful analysis of the self-

energy is needed since the response function at q = Q∗ = Qcb should involve

quasi-particle excitation far from the Fermi surface.

The red points in Fig. 4.5 represent Vins(T ) where χc diverges for fixed

T . It is seen that an end point of Vins appears at T ≈ 0.401. Fig. 4.6 shows
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Figure 4.6: V -dependence of χ−1
c at U = 4. The pink, red, blue and green line

represent the results for T = 0.39, 0.4, 0.41 and 0.42, respectively. Above

T = 0.41, the divergence of χc does not appear.

V -dependence of χ−1
c at U = 4 for T = 0.39, 0.4, 0.41 and 0.42. It is seen

that χc has a local minimum point at V = Vmin at fixed T . With increasing

V , the effective interaction V SIA
σσ (Q∗, 0) becomes large, while G(q) decreases

since the electron scattering (the self-energy correction) is enhanced. There-

fore, it is expected that the decrease of the compressibility for V > Vmin is

due to the effect of G(q). In SIA, χc has higher-order terms of Aslamazov-

Larkin (AL) type vertex corrections which are expected to be important for

the compressibility with increasing charge fluctuations as discussed in the

previous chapter. These terms have λ(QCB = (QCB, 0)) which is defined as

λ(QCB) = −
∑

k

G2(k)G2(k + QCB). (4.25)

Fig. 4.7 (a) and (b) show V -dependence of λ(QCB) at T = 0.2 and 0.42.

It is seen that λ(QCB) decreases with increasing V for both temperatures.

However, the ratio of decrease of λ(QCB) is large and the value of λ(QCB)

is small for high temperatures. This tendency coincides with the behavior

of Vins at high temperatures and it is expected that the suppression of G(q)

has the key to form the end point.
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Figure 4.7: V -dependence of λ(QCB)at U = 4 for (a) T = 0.2 and (b)

T = 0.42. The charge-ordering transition point determined by RRPA is at

VCO = 1.92 for T = 0.2 and VCO = 1.954 for T = 0.42, respectively.

4.4 Summary and discussions

In this chapter, we have shown divergence of the uniform charge suscepti-

bility χc before the charge-ordering transition in the present model, i.e., 2D

EHM with nearest-neighbour Coulomb interaction. The negative charge sus-

ceptibility means instability of electrons with respect to the uniform change

of the electron density. One possible state is a spatially inhomogeneous state

of a uniform metallic state and a charge-ordered state with different electron

densities. We call this mixed state as a ”phase separation”. We show a

schematic figure of the phase separation in Fig. 4.8. It is noted that the sys-

tem is already in the phase separation before divergence of χc. The transition

point into the phase separation should be determined by reconstruction of

the nonconvex free energy by the Maxwell construction law. In the present

calculation, we cannot perform this procedure because of the lack of the free

energy in the charge ordered phase. The negative compressibility, however,

guarantees at least the existence of the phase separation in the present model.

In order to relate this electronic instability to the experimental observa-

tion of inhomogeneous charge disproportion in organic conductors, we need

careful consideration of approximation adopted in the model. Especially, the
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long-range Coulomb interaction neglected in the EHM is important since the

charge-rich(poor) phase with imbalance between the electron charge and the

background positive charge of ions has a macroscopic charge, and therefore

has a large charging energy due to long-range Coulomb interaction. We ex-

pect that in the presence of the long-range Coulomb interaction this negative

compressibility drives the system into a ”microscopic” inhomogeneous state

rather than the macroscopic phase separation[47]. It is an important question

left for a future problem to clarify the final inhomogeneous electronic state

realized after electronic instability of uniform metallic state. We conjecture

that strong electron-phonon coupling may play an important role to relax a

kind of charge frustration induced by long-range interaction.

In this chapter, we clarified one possible realization of electronic instabil-

ity starting with a metallic state by perturbative approach using diagram-

matic expansion. We emphasize that the existence of the Fermi surface is

essential for the instability in the present calculation. We speculate that the

negative compressibility may be understood by the Pomeranchuk instability

with respect to uniform change of electron density in terms of the Fermi liq-

uid theory. Then, it is critical to ask whether the negative compressibility

survives even in the presence of strong electron correlation. This is a difficult

question to be answered, and have to be left for a future problem. We only

note that the phase separation is obtained in the one-dimensional EHM for

large positive V by exact diagonalization method [48]. Finally, we provide

a complementary result for a hint of consideration of phase separation in

the strongly correlated regime. In Fig. 4.9, we show the distance between

two instabilities of phase separation and CO indicating the size of the phase

separation region in the phase diagram for T = 0.1. We find that the phase

separation region is suppressed when the on-site interaction U increases. This

result strongly indicates that the phase separation seen in the present calcu-

lation disappears in the limit of U → ∞ while fixing V . This suggests that

the correct strong-coupling limit should be taken to keep a finite portion of

doublon excitation if one considers phase separation in the strong coupling

region.
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Chapter 5

Summary

In this thesis, electronic properties of organic conductors in the presence

of the inter-site Coulomb interaction are investigated in the viewpoint of

diagrammatic expansion starting from the metallic state.

We first studied the spin and charge response functions by using a new

scheme of generating a series of non-skeleton conserving approximation(NSCA).

We showed that the reentrant transition observed in RPA remains even in the

first-order NSCA. We also showed that the spin susceptibility is enhanced to-

ward the CO transition. This result is consistent with the measurement of the

spin susceptibility of θ-(BEDT-TTF)2RbZn(SCN)4 and β-(meso-DMBEDT-

TTF)2PF6.

Next, we studied the uniform charge susceptibility by using the shielded-

interaction approximation within the Baym-Kadanoff conserving approxima-

tion. The merit of this approximation is that all the vertex corrections can

be fully treated by direct differential calculation of the response of the system

with respect to the external potential. This calculation allows us to study

the feedback effect of strong charge fluctuations onto the response function

through the vertex corrections. We find that the strong charge fluctuations

lead to a remarkable enhancement of the charge compressibility and even

make it negative indicating the instability of uniform metallic state near the

CO transition. This may provide a trigger of the inhomogeneous charge

disproportion called as ”short-range charge-ordering” observed in the exper-
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iments of θ-(BEDT-TTF)2RbZn(SCN)4 etc.

The present calculation has been done for a simple square-lattice EHM

with nearest-neighbor Coulomb interaction. In order to compare the present

theory with experiments, it is needed to consider several important effects. In

particular, the long-range Coulomb interaction beyond the nearest-neighbor

site and electron-phonon interaction will be important to analyze the ex-

periments. More realistic calculation including these effects will be a future

problem.
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Appendix A

Non-skeleton conserving

approximation

In this Appendix, we present an iterative approximation scheme for system-

atic inclusion of vertex corrections to the charge and spin response functions.

We construct (A) the single-particle Green’s function G
(i)
σ (k), (B) the ver-

tex function Λ
(i)
σσ′(k; q), and (C) the response functions χ

(i)
NN(q) and χ

(i)
SzSz

(q).

These functions are constructed so that Ward identity holds at each level of

approximation assigned by an integer i based on the Kadanoff-Baym theory,

and the next level of approximation assigned by i+1 is constructed from the

i th approximation. Our algorithm of generating a series of approximations is

almost the same as the one proposed by Takada [41]. Our scheme differs from

Takada’s one on three points; (1) we start with the Hartree approximation as

an initial approximation, (2) we use the standard diagrammatic analysis for

Σ̃σ(k) with respect to the bare or mean-field Green’s function G
(0)
σ (k) instead

of the skeleton-expansion diagrammatic analysis with respect to the dressed

Green’s function G
(i)
σ (k), and (3) we simplify iterative procedure by avoiding

the Bethe-Salpeter equations. Our scheme is suitable to study the leading

contribution of the vertex corrections.

(A) The single-particle Green’s function: Suppose the excess self-energy

Σ̃
(i)
σ (k) is given as a functional of the mean-field Green’s functions G

(0)
σ (σ =
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±), i.e.

Σ̃(i)
σ (k) ≡ Σ̃(i)

σ (k : [G
(0)
± ]) . (A.1)

We take the initial function as Σ̃
(0)
σ (k) = 0 (the Hartree approximation). Let

the single-particle Green’s function be

G(i)
σ (k) = [G(0)

σ (k)−1 − Σ̃(i)
σ (k)]−1 , (A.2)

where the corresponding diagram is shown in Fig. A.1 (a). G
(i)
σ (k) is a func-

tion of µ̃
(i)
σ ; the particle number and chemical potential are calculated as

n(i)
σ =

∫
k

eiϵηG(i)
σ (k) , (A.3)

µ(i)
σ = µ̃(i)

σ +
∑
σ′

vσσ′(0)n
(i)
σ′ . (A.4)

In this paper, we fix µ̃
(i)
σ ≡ µ̃σ during the calculation, and determine µ̃σ by

n
(i)
σ = 3/4 from a µ̃σ-n curve.

(B) The vertex function: Following the Kadanoff-Baym scheme, the ver-

tex function Λ
(i)
σσ′(k; q) ≡ Λ

(i)
σσ′(k; q : [G

(0)
± ]) is given as the sum of δσσ′ and

all the possible diagrams obtained by inserting the external vertex carrying

a momentum q into an arbitrary G(0)-line with a spin σ′ in each diagram

for Σ̃
(i)
σ (k : [G

(0)
± ]). This procedure is schematically shown by the Feynman

diagrams in Fig. A.1 (b). Note that the wave numbers and the Matsubara

frequencies at all the internal and external vertexes are conserved. The ver-

tex function thus obtained satisfies various types of the Ward identity, one

of which is given by

Λ
(i)
σσ′(k; 0) = δσσ′ − ∂Σ̃

(i)
σ (k)

∂µ̃σ′
. (A.5)

This identity is proved by the same way as in § 3.2.3 as follows. Since Σ̃
(i)
σ (k)

depends on µ̃± only through G
(0)
± , the differential operation on Σ̃

(i)
σ (k) with

respect to µ̃σ corresponds to an operation to pick up one internal G
(0)
σ′ (p)

line in Σ̃
(i)
σ (k) in all the possible ways, and to replaces it with G

(0)
σ′ (p)2. This

differential operation is nothing but the vertex insertion for q = 0 as seen
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in Fig. A.1 (b). (C) The response functions: The response function χ
(i)
σσ′(q)

is written in terms of the one-interaction irreducible part χ̃
(i)
σσ′(q) at the i th

level of approximation as

χ
(i)
σσ′(q) = χ̃

(i)
σσ′(q) −

∑
σ1,σ2

χ̃(i)
σσ1

(q)vσ1σ2(q)χ
(i)
σ2σ′(q) , (A.6a)

χ̃
(i)
σσ′(q) = −

∫
k

G(i)
σ (k + q)G(i)

σ (k)Λ
(i)
σσ′(k; q) . (A.6b)

Then, the charge and spin response functions χ
(i)
NN(q) and χ

(i)
SzSz

(q) are cal-

culated as

χ
(i)
NN(q) =

1

2

∑
σ,σ′

χ
(i)
σσ′(q), (A.7a)

χ
(i)
SzSz

(q) =
1

2

∑
σ,σ′

σσ′χ
(i)
σσ′(q). (A.7b)

As proved in § 3.2.3, the Ward identity (A.5) leads the following identity be-

tween the isothermal susceptibilities and the q-limit of the response functions

at the i th level of approximation:

χ(i)
c ≡ 1

2

∂n(i)

∂µ
= χ

(i)
NN(0), (A.8a)

χ(i)
s ≡ 1

2

∂m(i)

∂h
= χ

(i)
SzSz

(0). (A.8b)

(D) The self-energy in the next level of approximation: For a system-

atic improvement in the approximation, we require that the vertex func-

tions should be taken account in a manner consistent with the single-particle

Green’s function. This requirement makes us to select the self-energy in the

next level of approximation as

Σ̃(i+1)
σ (k) = −

∑
σ′

∫
q

G(i)
σ (k + q)V

(i)
σσ′(q)Λ

(i)
σσ′(k; q) , (A.9a)

where the effective interaction V
(i)
σσ′(q) is given by

V
(i)
σσ′(q) = vσσ′(q) −

∑
σ1,σ2

vσσ1(q)χ̃(i)
σ1σ2

(q)V
(i)
σ2σ′(q) . (A.9b)
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The diagrams of these equations are shown in Fig. A.1 (c) and (d). With

this Σ̃
(i+1)
σ (k) ≡ Σ̃

(i+1)
σ (k : [G

(0)
± ]), we can construct the approximation for

χ
(i+1)
NN (q) and χ

(i+1)
SzSz

(q) following the processes in (A), (B) and (C).

In the text, we have used two approximations, i.e., the RPA and the ap-

proximation with leading vertex corrections. In the iterative approximation

described above, the former corresponds to i = 0, and the latter to i = 1. In

principle, we can continue the iterative process as one hopes, although it is

difficult to continue it for i ≥ 2 practically. We note that response functions

approaches the exact ones in the limit of i → ∞ as [41]

lim
i→∞

χ
(i)
NN(q) = χ

NN
(q) , (A.10a)

lim
i→∞

χ
(i)
SzSz

(q) = χ
SzSz

(q) . (A.10b)
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Figure A.1: The Feynman diagrams of the present iterative approximation:

(a) the Dyson equation, (b) construction of the vertex function, (c) the ef-

fective interaction, and (d) the next definition of the self-energy.
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