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Abstract

In this thesis, we study theoretically transport properties of various mesoscopic
systems. Our main goal is to reveal dynamic response of a mesoscopic capacitor
composed of a quantum dot and a lead, where a unique quantization phenomenon
of charge relaxation resistance has been experimentally observed recently. In or-
der to perform nonperturbative analyses of mesoscopic systemst, we demonstrate
the path-integral Monte Carlo (PIMC) simulations using the cluster algorithm.
Three target systems are considered. The first one is the single impurity problem
in a Tomonaga-Luttinger liquid with spin degeneracy, to which we demonstrated
the performance of the PIMC method. By analyzing the low-temperature behav-
ior of the charge and spin conductances, we identify the phase diagram for an
intermediate impurity strength. We compare our results with the previous results
of the standard perturbative renormalization group for weak and strong impurity
backscatterings. Next we consider a large quantum dot connected to a bulk lead
by a single mode point contact. We extend the cluster algorithm so that it takes
into account the charging effect and analyze the Coulomb blockade phenomena in
the quantum dot. By means of the PIMC method, we verify the theoretical predic-
tion that the capacitance diverges logarithmically due to the two-channel Kondo
effect at charge degeneracy points for arbitrary dot-lead connection. Finally, we
tackle the dynamic response of a mesoscopic capacitor, where both transport and
Coulomb blockade are important for the quantization of the charge relaxation re-
sistance. By means of perturbation theory, renormalization group technique, and
the path-integral Monte Carlo method, the charge relaxation resistance is evalu-
ated in the whole range of dot-lead coupling. We predict that the charge relax-
ation resistance is universal even in the presence of strong Coulomb blockade for
the Luttinger parameter K > 1/2, while the Kosterlitz-Thouless transition dra-
matically influences the universal nature of the charge relaxation resistance for
K < 1/2.
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Chapter 1

Introduction

1.1 Motivation

Recent nanofabrication techniques allow researchers to confine electrons in low-
dimensional structures with nano scale such as quantum wires and quantum dots.
These nanostructures are called mesoscopic systems and have been studied ener-
getically both by experimentalists and theorists ever since 1980’s. In early studies,
quantum coherence of electrons and quantum-classical crossover at intermediate
length scale were of central interest [1, 2, 3]. Nowadays, one can design nanos-
tructures as needed and actively control the quantum-mechanical states of inside
electrons. Indeed there are a number of experiments which demonstrate coher-
ent manipulation of electronic states in various systems [4]. Reflecting the high
controllability, there is growing interest in the application of the nanostructurs to
quantum information in recent years [5].

Among the nanostructures experimentally realizable, quantum dot systems
provide attractive playgrounds for researchers, since they have several advantages
in application to quantum information technologies. For example, the quantum
bit (qubit) is an essential building block for quantum computation and can be re-
alized as superposition of, e.g., different charge (or spin) states in a quantum dot.
One can manipulate dynamically the qubits thus obtained by controlling param-
eters such as a gate voltage, a source-drain bias, and an external magnetic field.
Recently one-qubit [6] and two-qubit [7] operations have been demonstrated in
double quantum dot systems. From the viewpoint of quantum communication,
on the other hand, the coherent single-electron source fabricated in a quantum
dot system [8] is another promissing candidate for the application. The creation
of a single-electron source is expected to be simpler than a single-photon source
because of Fermi statistics and Coulomb interaction.

Toward future developments in rapid manipulation of quantum dot systems, it
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8 CHAPTER 1. INTRODUCTION

is highly demanded to reveal dynamical properties of coherent transport phenom-
ena. Despite the long history of mesoscopic physics, it is only quite recent that
experiments on dynamical transport in the coherent regime have become possible.
One of the simplest examples is the measurement of GHz-frequency response of
a mesoscopic capacitor, which is composed of a quantum dot and a lead [9]. Sur-
prisingly, dynamical resistance through a quantum point contact (QPC) is quan-
tized at h/2e2, which is independent of transparency of the QPC. This behavior
is utterly different from that for the dc resistance determined by the Landauer-
Büttiker formula [10, 11, 12], which explicitly depends on the transmission proba-
bility. Thus, in the coherent regime, even the simplest case provides a challenging
problem leading to a counterintuitive result.

To understand the dynamical properties of the mesoscopic systems, one should
also take into account the fact that transport phenomena in nanostructures are fre-
quently affected by interactions between electrons. For example, in a small quan-
tum dot, the cost of charging energy suppresses electron transmission and ensures
a well-defined electron number in the dot, which is called Coulomb blockade [13].
On the other hand, an interacting electron system confined one-dimensionally is
a Tomonaga-Luttinger liquid at low temperature and exhibits characteristic trans-
port properties [14, 15, 16, 17]. It is also well-known that in a quantum dot system
conduction electrons in the lead and a localized electron in the dot form a spin-
singlet ground state below a characteristic temperature, which is called the Kondo
effect. So far, these many-body effects have been investigated mainly in the static
or dc case. However little is known about how electron interactions modify the
dynamical transport in the coherent regime.

Motivated by the circumstances mentioned above, we in this thesis aim to re-
veal the dynamical properties of a mesoscopic capacitor in the presence of strong
electron interactions. Especially, we are interested in the regime with sufficiently
large transmission, where electronic transport is expected to be phase-coherent.
In order to investigate the intermediate regime, which is in general difficult to
treat analytically, we employ the path-Integral Monte Carlo (PIMC) method. The
PIMC method has become applicable to such an intermediate region thanks to the
cluster algorithm, which has been recently developed in the context of resistively
shunted Josephson junctions by Werner and Troyer [18]. In Chap. 3, we extend
their algorithm to an incoherent quantum dot with spinful electrons and analyze
the static property, or the capacitance. In Chap. 4, we apply the PIMC simulation
to dynamic response in a mesoscopic capacitor and display our main results.

In the rest of this chapter, we first review theoretical studies of dynamical resis-
tance in the coherent regime, as well as the recent experiment of the ac responses
in a quantum dot in Sec. 1.2. Problems left unsolved on the dynamical responses
in nanostructures are also summarized. In Sec. 1.3, we briefly review the known
many-body effects. Finally, we describe the contents of this thesis in Sec. 1.4.
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1.2 ac transport in a mesoscopic capacitor
To make the problem clearer, let us first review prior studies on the dynamical re-
sponse of a mesoscopic system. The system we have in mind is a coherent quan-
tum dot, also referred to as a mesosocpic capacitor, depicted in the left panel of
Fig. 1.1. The dot is connected to the lead via a M-channel quantum point contact
(QPC) and is capacitively coupled to a gate voltage. One way of characterizing
the transport properties of such a system is to apply an oscillating gate voltage
and measuring the resistance through the QPC. One can introduce RC time τRC

by analogy to the classical RC circuit. If one denotes the resistance through the
QPC by Rq and the capacitance of the dot by Cµ, the charge relaxation time of
the mesoscopic capacitor reads τRC = 1/RqCµ. It is clear from the circuit equation
that the admittance of the mesoscopic capacitor can be expanded at low-frequency
regime ω � 1/τRC as

G(ω) =
(
Rq +

1
−iωnCµ

)−1

' −iωCµ + ω
2Cµ

2Rq + O(ω3). (1.1)

The quantum resistance Rq appearing in the quadratic term in ω is referred to as
charge relaxation resistance. In their pioneering works [19, 20], Büttiker et al.
have applied the self-consistent scattering theory to the mesoscopic capacitor and
derived a low-frequency expansion similar to Eq. (1.1). The charging effect in
the dot is taken into account through an internal effective potential determined
self-consistently. The charge relaxation resistance thus obtained is represented as

Rq =
h

2e2

∫
dE(−d f /dE)Tr[S†(E)∂S(E)/∂E]2

{
∫

dE(−d f /dE)Tr[S†(E)∂S(E)/∂E]}2
, (1.2)

where S denotes a M × M scattering matrix. Surprisingly enough, the charge re-
laxation resistance for a single channel (M = 1) is quantized at Rq = h/2e2 at

Figure 1.1: (left) Schematic figure of a mesoscopic capacitor. (right) Charge re-
laxation resistance as a function of the gate voltage on the point contact VG. Taken
from Ref. [9].
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zero temperature. The quantization of the charge relaxation resistance essentially
differs from the quantized dc resistance in quantum wires and (integer) quantum
Hall edges in two points. The quantized value of Rq per channel equals half a
resistance quantum h/2e2; clearly, the factor 1/2 in the quantized value has noth-
ing to do with spin degeneracy. More importantly, the quantized resistance is
achieved irrespective of transmission through the QPC or the gate voltage, due to
cancellation of the scattering matrices at T = 0. These two peculiarities suggest
breakdown of the Kirchhoff’s law in the quantum RC circuit at low frequencies
ω � 1/τRC in the sense that the impedance of the quantum resistor, i.e., QPC is
not given by its dc resistance.

Although the above theory was presented more than a decade ago, recently
there has been a renewed interest in the quantized charge relaxation resistance ow-
ing to the progress in experimental techniques in the ac regime. Gabelli et al. has
experimentally confirmed the theoretical prediction by measuring charge relax-
ation resistance of a mesoscopic capacitor shown in the left panel of Fig. 1.1 [9].
The mesoscopic capacitor is realized electrostatically in a two-dimensional elec-
tron gas (2DEG). A magnetic field B = 1.3 T is applied perpendicular to the
2DEG, so that integer Hall edge states are realized along the edge of the system.
The QPC voltage VG controls transmission through the QPC and in the present
case only a single mode is transmitted. The gate voltage in the dot oscillates with
frequency ω ∼ 1 GHz, which is sufficiently small compared to the inverse RC
time 1/τRC ∼ 100 GHz. Thus one can expect that charge relaxation condition
ω � 1/τRC is guaranteed in this frequency regime. Note that the frequency ω
should be larger than the temperature experimentally achievable ∼ 1 GHz, oth-
erwise the observed quantity would be smeared out by thermal fluctuations. It is
clear from the circuit equation Z = Rq + 1/(−iωCµ) that in experiments Rq can be
obtained as the real part of impedance Z. In the right panel of Fig. 1.1, the charge
relaxation resistance, or Re(Z), is shown as a function the QPC gate voltage VG.
The data is roughly equal to h/2e2 in consistency with the theory, at least for large
VG (weak reflection). Note that the abrupt increase in Rq for small VG indicates
pinch-off of the transmission channel.

Stimulated by the experimental realization of the quantized charge relaxation
resistance, Nigg et al. have developed a more realistic theory based on a tunnel
Hamiltonian [21]. In their theory, the charging effect in the quantum dot is treated
within the Hartree-Fock approximation. Rq calculated in the low-frequency limit
ω � 1/τRC is again quantized at h/2e2. The charge relaxation resistance seems to
be robust even in the presence of the charging effect, judging from the results in
Refs. [19, 21]. However, it should be noted that these results are obtained based
on mean-field-type approximations and are valid only when the charge fluctuation
is small. This suggests that on the degeneracy points, where two neighboring
charge states, e.g., Q = ne and Q = (n + 1)e (with an integer n) are degenerate,
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large charge fluctuations may modify the dynamical properties of the mesoscopic
capacitor. Indeed, it has been predicted that in incoherent quantum dots the ground
state on the degeneracy points are drastically affected by the Kondo effect due to
pseudo spin both in the weak and strong coupling limits [22, 23]. Then a question
arises; is the charge relaxation resistance still quantized even in the presence of
the Kondo physics? This is the topic in Chap. 4 and we see that the Kondo physics
is the key to understanding the dynamic resistance on the degeneracy points.

1.3 Electron interactions in mesoscopic systems
Electrons confined in low-dimensional structures with nano scale are subject to
strong electron interactions. In this section, we give a few examples of interaction
related to the problems in Chap. 3 and Chap. 4, and describe how each interaction
influences the transport phenomena.

1.3.1 Tomonaga-Luttinger liquid
In one-dimensional (1D) electron systems the usual Fermi liquid behavior is de-
stroyed by the interaction between electrons. As a consequence, low-energy exci-
tations in the interacting 1D electron system are density fluctuations of charge and
spin modes, and the ground state is called a Tomonaga-Luttinger liquid (TLL) [14,
15, 16, 17]. The peculiar behaviors of a TLL are experimentally observed in frac-
tional quantum Hall edges [24, 25, 26] and single-wall carbon nanotubes [27, 28,
29]. Conventionally, a TLL is formulated with the bosonization method as fol-
lows. For simplicity, we here consider the spinless case. If the dispersion relation
is linearized around the Fermi level at low temperatures, the Hamiltonian for free
electrons reads

Hfree = vF

∑
r=±

∑
k

(rk − kF)cr,k
†cr,k, (1.3)

where c±,k is the annihilation operator for an electron with momentum k moving in
the ±x direction. Due to the two branches of linear dispersion in Eq. (1.3), charge
and current fluctuations behave as bosonic operators. Then, one can express the
Hamiltonian for the interacting 1D electron system in the quadratic form

H0 =

∫
dx
2π

 u
K

(
∂φ

∂x

)2

+ uK
(
∂θ

∂x

)2 , (1.4)

where φ and θ are canonically conjugated bosonic fields satisfying the commuta-
tion relation

[φ(x), θ(x′)] =
iπ
2

sgn(x − x′). (1.5)
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u ≡ vF/K is the sound velocity, and K is a positive parameter describing (short-
range) interactions between electrons:

K < 1 repulsive
K = 1 noninteracting
K > 1 attractive.

(1.6)

Eq. (1.4) is obviously the Hamiltonian for an elastic string, which allows us to
calculate exactly various correlation functions. For example, we can calculate the
two point correlation function 〈φ(x1, τ)φ(x2, 0)〉 in the imaginary-time representa-
tion to estimate dc conductance between x1 and x2

G(x1, x2) = lim
iωn→0

e2

h
2|ωn|
π

∫ β

0
dτ〈φ(x1, τ)φ(x2, 0)〉eiωnτ =

e2

h
K. (1.7)

Thus the interaction parameter K can be also regarded as dimensionless conduc-
tance of a homogeneous TLL. Note that the factor K reflects interactions in the
leads (x < x1, x2 < x) not in the wire (x1 < x < x2). This can be seen by replacing
the TLL leads (K , 1) with Fermi-liquid leads (K = 1), i.e.,

K(x) =
{

KL = 1 x < x1, x2 < x
KW , 1 x1 < x < x2.

(1.8)

The conductance for the inhomogeneous interactions (1.8) is calculated [30] as

G =
e2

h
KL =

e2

h
(1.9)

and recovers the Landauer’s formula without scatterers.
The transport property of a TLL is dramatically modified by introducing scat-

terers such as nonmagnetic impurities or single-mode point contacts [31, 32, 33,
34]. For example, if a local scatter with barrier height V0 is introduced at the ori-
gin x = 0 [31], the Hamiltonian describing an electron reflected by the scatterer
reads

HV = −V0[ψ+†(x = 0)ψ−(x = 0) + H.c.] = −V cos[2φ(x = 0)]. (1.10)

where the reflection strength V ∝ V0. Noticing the fact that the total Hamiltonian
H0 + HV is quadratic in φ(x , 0)’s, one can integrate out these fields away from
the origin to derive an effective action

S =
1

πKβ

∑
ωn

|ωn||φ̃(ωn)|2 − V
∫

dτ cos[2φ(τ)], (1.11)
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where φ(τ) ≡ φ(x = 0, τ) and φ̃(ωn) is the Fourier transform of φ(τ). One can
also start from a fractional quantum Hall edge state and derive the same model,
where K is replaced with the filling factor ν = 1/m with an odd integer m. The
perturbative renormalization group (RG) [35] is a useful technique to analyze the
ground state of the single-impurity problem (1.11) for small V . By integrating out
high-frequency modes, one obtains the scaling equations

dVn

dl
= (1 − n2K)Vn (V1 ≡ V), (1.12)

where Vn denotes reflection strength associated with the nth-order scattering pro-
cess, and dl = −dD/D with the bandwidth D. It is clear from Eq. (1.12) that,
as the energy is lowered, at least V1 grows if K < 1, while all the Vn’s decay to
zero if K > 1. A similar RG treatment is possible by taking the strong scatterer
limit as the starting point. In this case, two semi-infinite TLLs are connected via a
weak link with tunneling strength t, and the RG equation for nth-order tunneling
process reads

dtn

dl
=

(
1 − n2

K

)
tn (t1 ≡ t). (1.13)

This equation means that, as the energy is lowered, at least t1 grows if K > 1,
while all the tn’s decay to zero if K < 1. The results of the RG equations (1.12)
and (1.13) are summarized in the left panel of Fig. 1.2. For repulsive interactions
K < 1, electrons are perfectly reflected by the scatterer at T = 0 (insulator phase);
for attractive interactions K > 1, electrons are perfectly transmitted through the
scatterer at T = 0 (conductor phase).

Although the RG equations (1.12) and (1.13) are applicable only in the lim-
its V → 0 and t → 0, respectively, the above discussion has been verified in
the nonperturbative regime based on the path-integral Monte Carlo method [36].
Moreover, H0+HV is equivalent to the boundary sine-Gordon model and therefore
is exactly solvable by means of the thermodynamic Bethe Ansatz [37]. Experi-
ments in the fractional quantum Hall regime at filling ν = 1/3 have also turned
out to support the above theory as shown in the right panel of Fig. 1.2.

1.3.2 The Coulomb blockade effect
In a quantum dot system with small geometrical capacitance Cg, tunneling of
electrons between the dot and a lead is in general exponentially suppressed by the
charging energy at low temperatures. This phenomenon is called the Coulomb
blockade. Since the electrostatic energy of the quantum dot system is given by

HC =
Q2

2Cg
+ QVg, (1.14)
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Figure 1.2: (left) Schematic flow diagram for the single-impurity problem in an
interacting 1D electron system. The ground state is an insulator for repulsive
interactions (K < 1), while it is a perfect conductor for attractive interactions (K >
1). (right) Temperature dependence of conductance through a point contact in the
fractional quantum Hall regime with filling ν = 1/3. The scaling behavior G ∝ T 4

is in good agreement with theoretical prediction G ∝ T 2/ν−2 [See Eq. 1.13]. Taken
from Ref. [24].

where Q is the dot charge and Vg is the gate voltage, the charge state in the dot
is controlled by tuning Vg. Especially, when Vg is tuned to a point where two
neighboring charge states Q = en and Q = e(n + 1) are degenerate, the cost
of the electrostatic energy vanishes. Therefore, one observes periodic peaks of
conductance through the quantum dot as a function of Vg.

Electron transport in the Coulomb blockade regime has been studied theoret-
ically in many literatures, most of which have dealt with weak tunneling of elec-
trons between leads and a quantum dot [38]. Electron transport is then described
by a classical master equation with tunneling rates for various processes, where
quantum coherence of electrons is not maintained during the tunneling events. In
this sense, such a transport is regarded as incoherent, although the transition rate
itself is determined by quantum tunneling through a quantum point contact (QPC)
between a lead and a dot.

If it is possible to suppress backward scattering on the QPC adjusting its gate
voltage, one needs to consider strong quantum fluctuation due to electron transfer
between a lead and a dot. Such a situation, called the strong tunneling regime,
cannot be treated with the conventional theory based on the rate equation. Strong
tunneling has been studied theoretically by Matveev [23] based on a simple model
of a quantum dot coupled to a lead through a point contact as shown in the left
panel of Fig. 1.3. Since electron transport in this system is governed mainly by
a single transmission channel near the point contact, Matveev has considered a
simple one-dimensional model. For a spinless electron system, the Hamiltonian
is written as
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H = Hkin + HV + HC (1.15)

Hkin = vF

∫ L

−∞
dx[ψ+†(x)(i∇ − kF)ψ+(x) + ψ−†(x)(−i∇ − kF)φ−(x)], (1.16)

HV =

∫ L

−∞
dxV(x)[ψ+†(x) + ψ−†(x)][ψ+(x) + ψ−(x)], (1.17)

HC =
(Q − eNg)2

2Cg
, Q = e

∫ L

0
dx[ψ+†(x)ψ+(x) + ψ−†(x)ψ−(x)]. (1.18)

Here, Hkin describes a kinetic energy for the right-(left-)going electrons denoted
by ψ+(x) [ψ−(x)]. The potential energy term HV describes the effect of the energy
barrier V(x) near the point contact, and HC is the charging energy for a quan-
tum dot with a size L. In this model, short-range interactions are neglected by
assuming that they are well screened by other electrons outside the transmission
channel; only the long-range Coulomb interaction is taken into account through
the charging energy HC. For further analysis, we take a delta-function-type po-
tential (V(x) = V0δ(x)) at the origin, and apply the bosonization method to the
present model. The bosonized Hamiltonian for a sufficiently large quantum dot
(L→ ∞) is given by

Hkin =

∫
dx
4π

u (
∂φ

∂x

)2

+ u
(
∂θ

∂x

)2 , (1.19)

HV = V cos[2φ(x = 0)], (1.20)

HC =
1
π2 EC[φ(x = 0) − πNg]2, (1.21)

where V = V0D/πvF , and D is the bandwidth. Thus, the bononization approach
has an advantage that the charging energy is easily formulated in terms of bosonic
fields.

Figure 1.3: (left) Simple quantum dot system composed a dot and a lead. (right)
Coulomb blockade of the dot charge Q.
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In Ref. [23], Matveev has studied the behavior of a quantum dot with strong
tunneling by means of the perturbative calculation with respect to the potential
barrier V . His result is summarized as follows. For V = 0, the charge Q = e〈φ〉/π
is proportional to the gate voltage Ng as shown with the straight line in the right
panel of Fig. 1.3. As V increases gradually from zero, the Vg-Q curve starts to os-
cillate slightly around the straight line. For larger V , electron transfer is governed
by weak tunneling processes, and the well-known step-like dependence called the
Coulomb staircase is recovered. In Chap. 4 of this thesis, the ac response of a
quantum dot system with a finite length L is studied by formulating the effective
action in a similar way based on the bosonization method.

In addition to the spinless case, Matveev has also considered the spin degree
of freedom both in the weak- and strong-tunneling limits and has found that the
low-energy transport properties are governed by the two-channel Kondo effect due
to a pseudo spin [22, 23]. In Chap. 3 of this thesis, we consider the same problem
in the intermediate region by means of the path-integral Monte Carlo method.

1.3.3 The Kondo effect
How localized electrons interact with delocalized electrons is a central question
to many problems in solid-state physics. The simplest manifestation of this situ-
ation is the Kondo effect, which occurs when a magnetic impurity is placed in a
metal [39, 40]. Nowadays, it is well known that a spin-singlet state is formed be-
tween the localized electron with a spin and conduction electrons near the Fermi
energy, below a characteristic temperature called the Kondo temperature. The for-
mation of the Kondo singlet state was theoretically predicted also for quantum dot
systems [41, 42], and has been examined experimentally through electron trans-
port [43, 44]. The coherent ac transport of quantum dots in presence of the Kondo
effect for real spins is an attracting problem, although it is out of the scope of this
thesis.

The essence of the Kondo effect can be studied with the Kondo Hamiltonian
written as

HK =
∑
k,σ

vFkc†k,σck,σ +
J‖
4
σz(c↑†c↑ − c↓†c↓) +

J⊥
2

(
σ+c↓†c↑ + σ−c↑†c↓

)
. (1.22)

Here, vF is the Fermi velocity, ck,σ is an annihilation operator of a conduction
electron, and cσ = L−1/2 ∑

k ck,σ is the Wannier operator of the conduction electron
at the impurity site. The conduction electrons interact with the localized spin
S = σ/2, through the exchange couplings, J‖ and J⊥. The J‖ term describes the
scattering process where the spin polarization is unchanged, while the J⊥ term
describes spin-flip scattering. The Kondo effect for real spins corresponds to the
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isotropic case (J⊥ = J‖) due to the SU(2) symmetry, while the charge-Kondo effect
is described by the above Hamiltonian with spin anisotropy (J⊥ , J‖).

A simple approach to examine the formation of the spin-singlet state in the
Kondo model is the poor-man’s scaling [45]. Here, we review a more sophisti-
cated scaling approach, which gives the same renormalization group equations [46,
47]. The partition function for the impurity in the instanton-gas representation is
derived from the Kondo model as

ZK =

∞∑
m=0

(
ρJ⊥
2τc

)2m ∫ β

0
dτ2m

∫ τ2m

0
dτ2m−1 · · ·

∫ τ2

0
dτ1

× exp

(2 − ε̄)
2m∑
j>k

(−1) j+k log
τ j − τk

τc

 , (1.23)

where the condition τ j+1 − τ j > τc with the short-time cutoff τc is assumed. The
phase factor ε̄ is related to J‖ as ε̄ = 2ρJ‖ up to the first order in J‖, where ρ =
(2πvF)−1 is the density of states of conduction electrons. If we change the cutoff
from τc to τc+dτc, i.e., if we carry out a partial integration of high-energy degrees
of freedom such that the the partition function remains invariant, we obtain a set
of differential equations describing the scaling behavior of each parameter. Up to
second order in ρJ‖ these scaling equations are given by

dε̄
dl
= (2 − ε̄)(ρJ⊥)2, (1.24)

dρJ⊥
dl
=
ε̄

2
ρJ⊥, (1.25)

where dl = −dD/D with the bandwidth D. The behavior of these equations are
understood by plotting the scaling trajectories in the ε̄-(ρJ⊥) plane as shown in
Fig. 1.4. The trajectories are classified into two types of flow; one is toward the
weak coupling J⊥ → 0, and the other is toward the strong coupling J⊥ → ∞.
The former reaches one of the ferromagnetic Kondo fixed points (line) at zero
temperature, while the latter to the antiferromagnetic Kondo fixed point. In the
former case, the ground state is doublet due to the spin degeneracy, and the spin-
flip process is completely suppressed at zero temperature. In the latter case, the
Kondo singlet between the localized spin and the conduction electrons is formed
below the Kondo temperature TK ∼ τ−1

c exp(−1/ρJ⊥). In Chap. 4, we will see
that the difference between the ferro- and antiferro-magnetic Kondo fixed points
is essential to the understanding of interaction effect on the dynamic response of
a mesoscopic capacitor.

We note that the above discussion is closely related to the problem of dis-
sipative quantum effects. For the dissipative two-state system, the corresponding
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Figure 1.4: The scaling trajectories of (ε̄, ρJ⊥).

partition function can be written in the form similar to Eq. (1.23), and the localiza-
tion transition of a quantum Brownian particle subject to a double-well potential
has been discussed theoretically in Refs [48, 49, 50]. Dynamics in this system has
been studied theoretically with the Monte Carlo method [51, 52], the numerical
renormalization group calculation [53, 54], and an analytical approach [55].

1.4 Contents
This thesis is organized as follows. In Chap. 2, we first explain in detail the
path-integral Monte Carlo method employed in this thesis. We demonstrate its
performance by applying it to a simple example of the dc transport through an
impurity located in a spinful Tomonaga-Luttinger liquid. In Chap. 3, we extend
the PIMC method to investigate the Coulomb blockade in quantum dot systems.
In Chap. 4, which is the main part of this thesis, we discuss dynamic response of
a mesoscopic capacitor in the presence of electron interactions.



Chapter 2

Path-Integral Monte Carlo Method

In order to study the non-perturbative regions of the models treated in this thesis,
we perform numerical simulations based on the path-integral Monte Carlo method
(PIMC). For efficient Monte Carlo sampling, it is important to adopt intelligent
algorithms optimized for each model. In this chapter, we first illustrate our up-
date scheme taking the impurity problem in a spinless Tomonaga-Luttinger liquid
(TLL) as an example. To demonstrate performance of the PIMC method, we ac-
tually apply the PIMC simulation to the impurity problem in a spinful TLL. By
analyzing the low-temperature behavior of the conductances, we identified four
distinct phases characterized by either perfect transmission or reflection of charge
and spin channels for an intermediate scattering strength. We compare our results
with the previous results of the standard perturbative renormalization group (RG)
for weak and strong impurity backscattering.

This chapter is organized as follows. We explain fundamentals of the PIMC
method in Sec. 2.1, and state details of update schemes of the PIMC simulation
for the impurity problem in a spinless TLL in Sec. 2.2. Actual simulation for an
impurity in spinful TLLs is performed in Sec. 2.3, where we present the zero-
temperature phase diagram deduced from our data, and then make a comparison
with the known RG result.

2.1 Fundamentals

In general field-theoretic problems, we are interested in the average of some ob-
servable O:

〈O〉 =
∫
DφO[φ] e−S [φ]∫
Dφ e−S [φ]

, (2.1)

19
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where S [φ] is the action describing the system. For the numerical evaluation of
the average, the path integral over an infinite number of smooth paths is replaced
with the sum over a finite number of discretized paths:

〈O〉 '
∑
φO[φ] e−S [φ]∑

φ e−S [φ] . (2.2)

In path-integral Monte Carlo simulations, this sum is evaluated with paths gener-
ated stochastically. However, it is inefficient to generate uniformly the paths since
most of the paths thus generated scarcely contribute to the sum due to the Boltz-
man factor e−S [φ]. One way of improving the sampling efficiency is to generate a
path φ(i) according to an equilibrium distribution with probability p(i) = e−S [φ(i)].
Such a strategy is called importance sampling, and the thermal average is then
replaced with the arithmetic mean

〈O〉 '
∑

i.s.O[φ]∑
i.s. 1

. (2.3)

In actual simulations, such an path is generated sequentially, φ(1) → φ(2) → φ(3) →
· · · , so that transition of the path satisfies the condition of detailed balance

W(i→ j)p(i) = W( j→ i)p( j), (2.4)

where W(i → j) denotes the probability of transition φ(i) → φ( j). The choice
of W(i → j) is arbitrary as long as it satisfies Eq. (2.4). Here let us adopt the
Metropolis algorithm; the transition φ(i) → φ( j) is always accepted if the energy is
reduced S [φ( j)]−S [φ(i)] < 0, otherwise it is accepted with probability eS [φ(i)]−S [φ( j)].
For short

W(i→ j) = min{1, eS [φ(i)]−S [φ( j)]}. (2.5)

Note that W(i → j) identifies the accept probability for a given transition, not the
transition itself; we need to design update schemes which generate the configura-
tions of φ ergodically.

In a typical routine of the Metropolis algorithm, one repeats the following
three steps (the operation “⇐” denotes substitution of right hand side into the left
hand side):

1. φ(old) ⇐ φ(new), and generate a new configuration φ(new) randomly.

2. Accept φ(new) with probability p = min{1, eS [φ(old)]−S [φ(new)]};
Otherwise, φ(new) ⇐ φ(old).

3. Measure O[φ(new)] and add it to the numerator of Eq. (2.3).

We note that before measurement one needs thermalization process, which is re-
alized by repeating only the steps 1 and 2 so that the configuration of the path
relaxes into an equilibrium one.
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2.2 Single impurity problem in a spinless TLL
To be specific, we here describe the application of the PIMC method to the im-
purity problem in a spinless Tomonaga-Luttinger liquid [36]. As shown in the
previous chapter [see Eq. (1.11)], this problem is described by the effective action

S = S 0 + S V , (2.6)

S 0 ≡
1

πKβ

∑
ωn

|ωn||φ̃(ωn)|2, S V ≡
∫ β

0
dτV(φ(τ)), (2.7)

where φ̃(ωn) is the Fourier component of the path φ(τ), andV(φ) = −V cos[2φ(τ)]
is the potential. Hereafter, we consider a general potential form V(φ). We dis-
cretize the imaginary time into J time steps as τ j = jτc( j = 0, 1, · · · , J − 1) with
the short time cutoff τc ≡ β/J. For the discretized path defined as

φ j ≡ φ(τ j), φ̃k ≡
φ̃(ωk)
τc
=

J−1∑
j=0

φ je
2πi
J jk, (2.8)

the action reads

S =
J/2∑
k=1

1
2σk

2 |φ̃k|2 + τc

J−1∑
j=0

V(φ j), σk
2 =

J2K
8k

, σJ/2
2 =

JK
2
, (2.9)

where φ̃J−k = φ̃k
∗ and σk

2 denotes standard deviation. In this thesis, we employ
two types of update schemes for the PIMC simulation as explained in the follow-
ing subsections.

2.2.1 Local update in the Fourier space
Since S 0 have a quadratic form in the Fourier space [56, 57], we modify the tran-
sition probability as

W(old→ new) = e−S 0[φ̃(new)]min{1, eS V [φ(old)]−S V [φ(new)]}, (2.10)

and constitute the Metropolis algorithm (2.5) by accepting a new φ̃k,0 generated
according to the normal distribution with standard deviation σ2

k with probability

p = min{1, eS V [φ(old)]−S V [φ(new)]}. (2.11)

It is well-known that a random number x normally distributed as ∝ e−
x2

2σ2 can be
generated by means of the Box-Muller transformation

x = σ
√
−2 log(1 − r1) cos 2πr2 or σ

√
−2 log(1 − r1) sin 2πr2, (2.12)
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where r1 and r2 are random numbers uniformly distributed in the range of [0, 1).
Note that the Fourier component at k = 0, i.e., φ̃0

(new) is randomly chosen from a
uniform distribution ranging over [0, π) and is accepted with probability (2.11).

2.2.2 Global update based on the cluster algorithm
Rewriting S 0 with φ j in Eq. (2.9), we obtain the action in the imaginary-time
representation:

S = −
∑
j< j′

κ j j′φ jφ j′ + τc

∑
j

V(φ j), (2.13)

κ j j′ = −
4

KJ2

J/2∑
k=−J/2+1

|k|e− 2πi
J k( j− j′), (2.14)

where the interaction kernel κ j j′ decays as ∼ | j− j′|−2 at low temperatures J → ∞.
IfV(φ) is a potential with plural minima, such as cosine potential and double-well
potential, tunneling between the minima is strongly suppressed by the long-range
interaction. As a result, a typical path stays most of time in the vicinity of potential
minima and kink structures appears between the minima once in a while. Such
paths can be generated efficiently by means of the cluster algorithm [58, 18]. First,
a mirror axis φ = φaxis is randomly chosen on one of the symmetry axes ofV(φ j),
and the displacement from it is defined as ϕ j ≡ φ j − φaxis. When one defines spin
variables by the sign of the displacement of the field as s j = ϕ j/|ϕ j|, the action
(2.14) is rewritten into the long-range Ising model

S 0 = −
∑
j< j′
K j j′ s js′j, K j j′ = κ j j′ |ϕ j||ϕ′j|. (2.15)

For this Ising model, we can apply the Swedsen-Wang cluster algorithm as fol-
lows. Each pair of sites ( j, j′) is connected with bond probability

p j j′ = max{0, 1 − e−2K j j′ }, (2.16)

and the cluster of connected sites is flipped against the mirror, i.e., φ j
(new) = 2φaxis−

φ j
(old) for each j included in the cluster. Note that one can build a cluster of sites

in time O(J log J) using binary search [59].

2.3 Single impurity problem in a spinful TLL
In this section, we actually perform the PIMC simulation to solve the impurity
problem in a spinful TLL [60]. The impurity problem in TLLs has been origi-
nally treated with perturbative renormalization group (RG) methods in the weak-
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and strong-impurity limits [31, 32, 33]. Whether a conduction channel becomes
perfectly transmitting or insulating at low temperatures is determined by the rele-
vance of the corresponding backscattering or tunneling process. In contrast to the
spinless case, in which RG analyses in the weak- and strong-backscattering limits
seem to be smoothly connected, the phase diagrams of the spinful case show clear
inconsistency in the two opposite limits, i.e., mismatch of RG flow, suggesting the
existence of an intermediate (unstable) fixed point. From the standard perturba-
tive RG approach, we can obtain little information about the phase diagram for an
impurity with intermediate strength. In this section, we study the phase transition
in the intermediate region of impurity strength using the PIMC simulation.

The single impurity in the spinful TLLs can be formulated in a similar way as
the previous section. The effective action is written in terms of two bosonic fields
corresponding charge and spin modes, φρ(τ) and φσ(τ) as [31, 32, 33]

S = S 0 + S 1, (2.17)

S 0 ≡
∑
ν=ρ,σ

1
2πKνβ

∑
ωn

|ωn||φ̃ν(ωn)|2, (2.18)

S 1 ≡ V
∫ β

0
dτ cos φρ(τ) cos φσ(τ), (2.19)

where φ̃ν(ωn) denotes the Fourier component of φν(τ). S 0 is rewritten in a nonlocal
form along the imaginary time as

S 0 = −
∑
ν

1
2Kνβ2

∫ β

0
dτdτ′

φν(τ)φν(τ′)
sin2[(π/β)(τ − τ′)]

, (2.20)

which is used in the cluster algorithm explained in Sec. 2.2.2.

2.3.1 Perturbative renormalization group
In order to allow for a comparison of our numerical results with the known ana-
lytic viewpoints, here we briefly review the renormalization group (RG) picture
presented in Refs. [31, 33]. In the weak backscattering limit, integration of the
high-energy shell produces the effective higher-order scattering processes, whose
amplitudes scale as

dV(l)
dl
=

[
1 − 1

2
(Kρ + Kσ)

]
V(l), (2.21)

dVρ(l)
dl
= (1 − 2Kρ)Vρ(l),

dVσ(l)
dl

= (1 − 2Kσ)Vσ(l). (2.22)
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Figure 2.1: Phase diagram of the ground state in the Kρ-Kσ plain in the weak
(left) and strong backscattering limits. (I) Both charge and spin are insulating; (II)
Charge is conducting, while spin is insulating; (III) Charge is insulating, while
spin is conducting; (IV) Both charge and spin are conducting.

Here the bandwidth is renormalized as D′ = De−l. V(l) reflects a single electron,
i.e., ψ+†ψ−+H.c., while Vρ(l) [Vσ(l)] reflects two charges (spins), i.e., ψ†

+,↑ψ−,↑ψ
†
+,↓ψ−,↓+

H.c. (ψ†
+,↑ψ−,↑ψ

†
−,↓ψ+,↓+H.c.). From these scaling equations, the phase diagram for

weak backscattering are deduced as shown in the left panel of Fig. 2.1, where the
phase boundaries are Kρ + Kσ = 2, Kρ = 1/2, and Kσ = 1/2. In region I, V grows
toward zero temperature (l → ∞), which means perfect reflection of electrons at
the potential barrier, hence an insulating phase. On the other hand, in region IV all
the scattering amplitudes vanish toward zero temperature, so electrons can freely
go through the barrier, hence a conducting phase. In region II (III), only Vσ (Vρ)
grows at low temperatures while the other scattering amplitudes vanish.

In the opposite limit V → ∞, the scaling equations are derived with help of
the duality transformation as

dt(l)
dl
=

[
1 − 1

2

(
1

Kρ

+
1

Kσ

)]
t(l), (2.23)

dtρ(l)
dl
=

(
1 − 2

Kρ

)
tρ(l),

dtσ(l)
dl
=

(
1 − 2

Kσ

)
tσ(l), (2.24)

where t, tρ, and tσ are amplitudes of the single-electron tunneling, the (two-
electron) charge tunneling, and the (two-electron) spin tunneling. From these scal-
ing equations, the phase diagram for strong backscattering is obtained as shown
in the right panel of Fig. 2.1, where the phase boundaries are 1/Kρ + 1/Kσ = 2,
Kρ = 2, and Kσ = 2.

The phase diagrams for the two limiting cases are thus obtained. Then, it is
natural to ask what happens for an intermediate value of the scattering potential V .
In order to illustrate this question visually, the three-dimensional phase diagram
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Figure 2.2: Left panel: Three-dimensional phase diagram in the (Kρ,Kσ,V)-space.
The phase boundaries are analytically obtained in the following two limits: for a
weak impurity (V → 0), the phase boundaries are three straight lines Kρ+Kσ = 2,
Kρ = 1/2, and Kσ = 1/2; for a strong impurity (V → ∞), the phase boundaries
are a hyperbola Kρ

−1 + Kσ
−1 = 2 and two straight lines Kρ = 2 and Kσ = 2. The

dotted lines connect the three points in the V = 0 and V = ∞ planes, at which the
phase boundaries coincide in the both planes. Right panel: Expected RG flows on
the intersection Kσ = 2Kρ.

in the (Kρ,Kσ)-plane is shown in the left panel of Fig. 2.2. The results of the
perturbative RG for V → 0 and V → ∞ indicate that the four phases are smoothly
connected between the two limiting values of V . Because the phase boundaries
are different between the two limiting cases, they should vary as a function of
V . The right panel of Fig. 2.2 shows the expected RG flows on the intersection
Kσ = 2Kρ. Here, we assumed that Kρ and Kσ are not renormalized because the
impurity should not change the bulk properties of the 1D electron system. We
find that the phase boundary between region I and IV is shifted from Kρ = 4/3
to Kρ = 3/2 as V increases. This indicates that there exists a phase transition
characterized by an unstable fixed point at an intermediate value of V in the range
4/3 < Kρ < 3/2 on this intersection.

While the RG approach with the help of duality transformation revealed the
RG flow in the limit of weak- and strong-backscattering barriers, there is little
hope to obtain further information on the RG flow in the whole parameter space,
most of which belongs to the non-perturbative regime. In the rest of this chapter,
we instead appeal to a numerical method, i.e., a PIMC simulation for the effective
action S given by Eq. (2.17), and examine transport properties of a spinful TLL
with an impurity for non-perturbative backscattering potential barrier.



26 CHAPTER 2. PATH-INTEGRAL MONTE CARLO METHOD

2.3.2 The path-integral Monte Carlo method
The basic strategy for construction of the path-integral Monte Carlo method adopted
here is the same as the example explained in Sec. 2.2. Here, we briefly explain
the PIMC method by emphasizing some points specific to the spinful model. The
discretized action of the present problem is given by

S = S 0 + S 1 (2.25)

S 0 =
∑
ν=ρ,σ

J/2∑
k=1

1
2σνk

2 |φ̃νk|
2, (2.26)

S 1 = Vτc

J−1∑
j=0

cos φρ j cos φσ j, (2.27)

σνk
2 ≡

{
KνJ2/4k k = 1, 2, · · · , J/2 − 1
KνJ k = J/2 , (2.28)

where τc ≡ β/J is the short-time cutoff, and φ̃νk = φ̃∗ν,J−k =
∑

j φν j e
2πi
J jk. For the

present model, we consider three types of update schemes as explained below.

2.3.3 Local update
In a local update in the Fourier space, a new value of φ̃νk (k > 0) is randomly
generated from a normal distribution with the variance σνk

2 given in (2.28) by
means of the Box-Müller method. This update is accepted with a probability

p = min{1, e−(S 1
new−S 1

old)}, (2.29)

where S 1
new − S 1

old is the variation of the potential term (2.27). For the k = 0
component φ̃ν0, a new value is generated from a uniform distribution ranged from
−π to π, and the update is accepted again with a probability (2.29).

2.3.4 Global update
A cluster update should be designed so that optimized paths for a given potential
are efficiently generated. In the case of the double-cosine potential (2.27), an opti-
mized path near the phase transition typically spends most of the time in potential
minima, and also has some kink structures connecting adjacent potential minima,
i.e., (φρ, φσ) = (nρπ, nσπ) with integers nρ and nσ such that nρ + nσ = odd for
V > 0. In order to generate such kinks, we introduce two relative field variables
ϕν j ≡ φν j − φνmirror for ν = ρ, σ as shown in Fig. 2.3, where the reference φνmirror is
appropriately chosen as described later. When one defines a spin variable by the
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Figure 2.3: Cluster updates of field variables φρ j and φσ j in a φρ-φσ plane, where
ϕν j ≡ φν j − φνmirror. The empty circles represent the potential minima, and the
dashed lines represent the reference fields φρmirror and φσmirror. Only the field vari-
ables at the j-th time step in a cluster are shown. (a) During one period of a
double-field cluster update, a point (ϕρ j, ϕσ j) is subject to mirror reflection twice,
i.e., once with respect to φρ j = φρ

mirror, and subsequently to φσ j = φσ
mirror. (The

whole process is (ϕρ j, ϕσ j) → (−ϕρ j, ϕσ j) → (−ϕρ j,−ϕσ j).) (b) As for a charge-
field cluster update, ϕν j is subject to mirror reflection with respect to φρ = φρmirror,
i.e., (ϕρ j, ϕρ j) → (−ϕρ j, ϕρ j). Similarly, ϕσ j in a spin-field cluster is updated as
(ϕρ j, ϕσ j)→ (ϕρ j,−ϕσ j).

sign of the relative field as sν j ≡ ϕν j/|ϕν j|, the nonlocal term (2.20) is written in a
discrete form as

S 0 = −
∑
ν

∑
j< j′

κν j j′ sν jsν j′ , . (2.30)

Taking the bandwidth cutoff into account explicitly, the coupling coefficient κν j j′

is evaluated as

κν j j′ ' −
2|ϕν j||ϕν j′ |

KνJ2

J/2∑
k=−J/2+1

|k|e 2πi
J ( j− j′)k. (2.31)

A cluster of spins is built by connecting sites with the bond probability deter-
mined by the exchange couplings κν j j′ , and all the spins in the cluster is flipped
with no rejection. If φνmirror is appropriately chosen so that the potential term
S 1 remains unchanged after the cluster is flipped. In Fig. 2.3, two kinds of such
rejection-free cluster update implemented in this chapter, named double-field clus-
ter update and single-field cluster update, are illustrated.

In the double-field update illustrated in the left panel (a), one horizontal mirror
and one vertical mirror are located along φρ

mirror = (nρ + 1/2)π and φσ
mirror =
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(nσ + 1/2)π, where nρ and nσ are integers. The Ising spins are connected with
bond probability

p j j′ = max{0, 1 − e−2
∑
ν κν j j′ sν j sν j′ }. (2.32)

Both the fields ϕρ j and ϕσ j in the cluster are then reflected with respect to the two
mirrors, i.e., (ϕρ j, ϕσ j) → (−ϕρ j, ϕσ j) → (−ϕρ j,−ϕσ j). Note that the connected
spins sν j and sν j′ are not necessarily parallel, which is different from the original
Swendsen-Wang algorithm. By means of this double-field cluster update, kink
structures connecting nearest-neighbor potential minima are inserted efficiently.

In the single-field update is illustrated in the right panel (b) in Fig. 2.3, only a
vertical mirror for the charge degree of freedom is located at φρmirror = nρπ with
an integer nρ. A cluster is constructed with bond probability

pρ j j′ = max{0, 1 − e−2κρ j j′ sρ j sρ j′ }. (2.33)

The relative fields ϕρ j in the cluster are then reflected with respect to the vertical
mirror, i.e., (ϕρ j, ϕσ j) → (−ϕρ j, ϕσ j), while the spin fields are left unchanged. A
similar cluster update is performed also for a horizontal mirror φσmirror = nσπ with
an integer nσ. These single-field cluster updates insert kink structures between
next-nearest-neighbor potential minima.

2.3.5 Linear conductance
In the PIMC simulation, we study zero-bias conductances of charge and spin chan-
nels to obtain the zero-temperature phase diagram for an intermediate value of V .
In the linear response regime, they are calculated from analytic continuation

Gν = lim
iωn→0

Gν(iωn), (2.34)

where the conductance at a Matsubara frequency is calculated from a correlation
function given as

Gν(iωn) =
2e2

h
|ωn|
π

∫ β

0
dτ〈φν(τ)φν(0)〉eiωnτ. (2.35)

In the PIMC simulation, the spin and charge conductances are evaluated with
Monte Carlo sampling for the correlation function in Eq. (2.35).

2.3.6 Results
This subsection is devoted to presenting our PIMC results. Phase transitions on
the line of Kσ = 1 and 1.8 are deduced from numerical data in Sec. 2.3.6 and
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Figure 2.4: Charge conductance Gρ(iωn) (left) and spin conductance Gσ(iωn)
(right) for different values of Kρ, plotted as a function of ωn. Kσ is fixed at
Kσ = 1.0 Symmetric coupling case (Kρ ' Kσ). J = 50, 100, 200, and 400, and
only the first ten points are shown for each Trotter number J. From top to bottom,
the values of Kρ are 1.2, 1.1, 1.05, 1.025, 1.0, 0.975, 0.95, 0.9, and 0.8. Conduc-
tance curves (of both charge and spin) show an upward bend with decreasing ωn

when Kρ > 1.025, whereas they are bent downward when Kρ < 0.975.

Sec. 2.3.6, respectively. The whole phase diagram is discussed in Sec. 2.3.7 in
comparison to the perturbative RG picture. In the present simulation, we fix the
backscattering strength as Vτc = 1, and the temperature is varied from J = 50 to
J = 400, where J is inversely proportional to temperature as J = β/τc.

Phase transition at Kσ = 1

In Fig. 2.4, we show the result on the Kσ = 1 line (SU(2) symmetric case), and
plot the first ten points of Gν(iωn) as a function of ωn for different values of Kρ

near the phase boundary. For a given Kρ, results for different J, i.e., for different
temperatures are superposed to form a bundle of curves. For both Gρ(iωn) and
Gσ(iω), one can see that the curves for Kρ > 1.025 are bent upward with de-
creasing ωn (in the limit of ωn → 0), while the curves for Kρ < 0.975 are bent
downward. Note also that for a given Kρ, the slope of different curves composing
the same bundle always becomes steeper with decreasing temperature (increasing
J). When the data shows such a monotonic dependence on temperature, one can
determine the phase boundaries by simply identifying a turning point at which
the bend of Gν(iωn) changes from upward to downward with decreasing ωn. In
the present case, the phase transition appears to be located around Kρ = 1 from
Fig. 2.4.

To obtain the phase diagram, transition points are actually determined by trac-
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Figure 2.5: DC conductances of charge (left) and spin (right) channels for differ-
ent values of Kρ. Kσ is fixed at Kσ = 1.0. Symmetric coupling case (Kρ ' Kσ).
Conductances are plotted as a function of the inverse temperature J. As expected
from Fig. 3, both charge and spin conductances increase with decreasing temper-
ature (increasing J) for Kρ > 1.025, whereas they decrease for Kρ < 0.975.

ing temperature dependence of dc conductances following Refs. [18, 61]. In
Fig. 2.5, we plot the dc conductances as a function of the inverse temperature J,
which are obtained by extrapolating the first five points on each curve in Fig. 2.4
to ωn → 0. With decreasing temperature, the dc conductance (of both spin and
charge) increases monotonically for Kρ > 1.025, whereas it decreases monoton-
ically for Kρ < 0.975. Here, the charge and spin channels show a simultane-
ous transition from conducting to insulating phase in consistent with the RG re-
sults. Recall that in the RG picture (see Fig. 2.1) the IV and I phases touch at
(Kρ,Kσ) = (1, 1) both in the weak- and strong-backscattering regimes, which sug-
gests that the phase boundary at that point is a straight line independent of V in
the (Kρ,Kσ,V)-space.

Phase transition at Kσ = 1.8

We plot the results of Gρ(iωn) and Gσ(iωn) for the Kσ = 1.8 in Fig. 2.6. One
can first observe that the charge and spin channels behave quite differently as a
clear consequence of the anisotropy between Kρ and Kσ. The curves for charge
conductance Gρ(iωn) are bent upward for Kρ > 0.5 with decreasing ωn, while the
same curves for Kρ < 0.5 are bent downward. In contrast to the case of Kσ = 1
in the previous subsection, the sign of the slope of the different curves composing
the same bundle may change.

We show the corresponding dc conductances as a function of temperature in
Fig. 2.7. The temperature dependence of the (charge) conductance Gρ shows a
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Figure 2.6: Charge conductance Gρ(iωn) (left) and spin conductance Gσ(iωn)
(right) for different values of Kρ, plotted as a function of ωn. Kσ is fixed at
Kσ = 1.8. Asymmetric coupling case (Kρ � Kσ). J = 50, 100, 200, and 400, and
only the first ten points are shown for each Trotter number J. From top to bottom
, the values of Kρ in the upper panel are 0.6, 0.55, 0.525, 0.5, 0.475, 0.45, and 0.4,
while those in the lower panel are 0.5, 0.45, 0.425, 0.4, 0.375, 0.35, and 0.3. In
this parameter regime, charge and spin channels behave quite differently.

monotonic behavior similar to the case of Kσ = 1. On the other hand, the tem-
perature dependence of the spin conductance Gσ is more peculiar: For example,
if one focuses on the conductance curves for Kρ = 0.35, their slopes are upward
at higher temperatures, J =50 or 100, whereas the same curves have an oppo-
site slope at lower temperatures, J = 200 or 400. Such non-monotonic behaviors
may be more clearly seen, if we look into the charge conductance in Fig. 2.7 for
Kρ = 0.350, 0.375, and 0.400. Similar crossover behaviors are observed whenever
analyzing the boundary between phases I and III.

These monotonic temperature dependences are expected to reflect the non-
monotonic flows of V near the intermediate unstable fixed point. We note that the
non-monotonic temperature dependences have already been reported in study of
dissipative Josephson junctions in Ref. [61]. Since the precise location of such
a non-trivial fixed point is unknown, one cannot immediately conclude that the
spin channel is in the conducting phase, even if the conductance, e.g. for Kρ =

0.450 or 0.500, tends to increase monotonically toward low temperatures up to
J = 400. Possibly, it might turn insulating at a certain lower temperature which
is numerically inaccessible. Since it is difficult to locate true phase boundaries at
T = 0 in the presence of intermediate unstable fixed points, we instead identify
the phase boundary at T , 0 by observing the temperature dependence near the
lowest temperature J ' 400.
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Figure 2.7: DC conductances of charge (upper) and spin (lower) channels for
different values of Kρ. Kσ is fixed at Kσ = 1.8. Asymmetric coupling case (Kρ �
Kσ). Conductances are plotted as a function of the inverse temperature J. Upper
: The temperature dependence for the charge channel shows monotonic increase
(Kρ > 0.5) or decrease (Kρ < 0.5) with decreasing temperature. Lower : The
spin conductance behaves non-monotonically for Kρ = 0.35, 0.375, and 0.4, e.g.,
for Kρ = 0.375, the conductance increases from J = 50 to J = 100, whereas it
decreases from J = 200 toward J = 400.

2.3.7 Phase Diagram
Repeating the analyses outlined in the previous subsection for different sets of Kρ

and Kσ near the phase transition, we determine the whole phase boundaries in
the (Kρ,Kσ)-plane. In a left panel of Fig. 2.8, we show our phase diagram for a
finite impurity strength Vτc = 1 obtained from the PIMC simulations at inverse
temperature J = β/τc = 400. Due to the symmetry of the action (2.17) in terms
of ρ and σ, the following discussion also holds true when the charge and spin
degrees of freedom are interchanged.

The phase boundaries, denoted with solid lines, are indeed located between the
two limits, which are shown in right two panels of Fig. 2.8. For nearly isotropic
interactions Kρ ' Kσ, our phase boundary at an intermediate coupling is close to
the one for weak backscattering. The boundary between region III and IV is also
close to the weak-backscattering phase boundary. On the other hand, for strongly
anisotropic interactions Kρ � Kσ, our phase boundary between I and III phases is
much closer to the strong-backscattering phase boundary.

2.3.8 Discussion
For nearly isotropic interactions Kρ ' Kσ, the system of Vτc = 1 is considered
to be located in the weak-backscattering regime. This is indicated by the ob-



2.3. SINGLE IMPURITY PROBLEM IN A SPINFUL TLL 33

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1  1.2

K
σ

Kρ

Phase I

Phase IV

Phase III

Charge insulator
Spin insulator

Charge conductor
Spin conductor

Charge criticality
Spin criticality

Figure 2.8: Phase diagram obtained from our PIMC simulations for the impurity
strength Vτc = 1. For comparison, the RG results in the strong and weak barrier
limits are shown in the upper-right and lower-right panels.

tained transition line between region I and IV similar to the weak-backscattering
case, also by the large conductances of both the charge and spin channels (see,
e.g., Fig. 2.5). For strongly anisotropic interactions Kρ � Kσ, however, the I-III
boundary resembles the one of the strong-backscattering case, i.e., Kσ = 2. Let us
discuss what this feature indicates. For small Kρ, the charge field is almost pinned
around the potential minima. If we assume that this localized charge field does
not affect the spin field, it is effectively described by a single-field action

S ' 1
2πKσβ

∑
ωn

|ωn||φ̃σ(ωn)|2 + V
∫

dτ cos φσ(τ), (2.36)

which leads naturally to the strong-backscattering phase boundary Kσ = 2. The
assumption of decoupling between charge and spin fields is not trivial, because
the I-III phase boundary is dependent on Kρ for weak barrier. Our result for the
phase boundary between region I and III indicates that the coupling between two
degrees of freedom vanishes by the potential barrier more sensitively than for the
other perturbations.
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2.4 Summary
In this chapter, we have explained intelligent update schemes of the PIMC method
by taking impurity problems in TLLs as examples. We actually perform the PIMC
simulation to solve the single impurity problem in a spinful TLL. Measuring the
temperature dependence of the charge and spin conductances, we have obtained
the phase diagram characterized by perfect conduction or insulation of the charge
and spin channels for an intermediate impurity strength. We showed that the phase
diagram obtained from our simulations is reasonably obtained in good consistency
with the results of the perturbative RG analysis.



Chapter 3

Coulomb Blockade in an Open
Quantum Dot

In this chapter, we study the Coulomb blockade in an open quantum dot con-
nected to a bulk lead via a single mode point contact [62]. We extend the PIMC
method introduced in Chap. 2 by taking into account the charging effect in the
dot. The Coulomb oscillation of the average charge and capacitance of the dot
is investigated, and is compared with known analytical results and those of nu-
merical renormalization group. At the degeneracy point, we observe logarithmic
divergence of the capacitance for strong backscattering at the point contact. This
observation supports the conjecture that the nature of the present system at the
degeneracy point is described by the two-channel Kondo problem for an arbitrary
strength of tunneling.

This chapter is organized as follows. In Sec. 3.2, we state our model for an
open quantum dot. In Sec. 3.33.3, we give details about the path-integral Monte
Carlo method employed here. In Sec. 3.4, we present numerical results, and com-
pare them with analytical results in some limits.

3.1 Introduction

As explained in Sec. 1.3, strong tunneling in a large quantum dot can be treated
with a model consisting of a quantum dot and a half-infinite lead connected via
a single mode point contact. The Coulomb blockade in such a structure has been
studied theoretically by several authors [22, 23, 63, 64]. The peculiar nature of
the large dot system is logarithmic divergence of the capacitance characterized
by the analogy to the two-channel Kondo problem [65]; Matveev has revealed
that with decreasing temperature the capacitance diverges logarithmically at the
degeneracy points both in the weak and strong tunneling limits [22, 23]. The con-

35
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Figure 3.1: Schematic figure of an open quantum dot connected to a bulk lead by
a single mode point contact. The dot is formed by applying negative voltage to the
gates (gray regions). The solid line shows the boundary of the two-dimensional
electron gas. The gate voltage Vg controls the charge in the dot. The width of the
constriction is adjusted so that only a single transverse mode is allowed to tunnel
through the point contact.

sistency in these opposite limits suggests that the Coulomb blockade system at the
degeneracy points can be described effectively by the two-channel Kondo model
for an arbitrary strength of tunneling. One way of confirming this conjecture is to
numerically study the intermediate tunneling regime. Recently, the two-channel
Kondo effect has been studied by Lebanon et al. with the numerical renormaliza-
tion group (NRG) method based on the tunneling Hamiltonian [64]. They showed
that the two-channel Kondo behavior is observed in a broad range of tunneling
strengths. Although their method is powerful enough to clarify properties of an
open quantum dot in the intermediate tunneling regime, it is difficult to extend this
approach to more complicated problems since numerical cost of matrix diagonal-
ization in the NRG calculation becomes exponentially large as the orthogonal set
of states in quantum dots increases. In this chapter, we present another numerical
approach to the same problem, and show that our simulation leads to the same
conclusion as in the NRG calculation. This result demonstrates that the PIMC ap-
proach is a powerful method to study dynamic response of quantum dot systems
in the presence of electron interactions, which will be discussed in Chap. 4.

3.2 Model

We formulate a quantum dot strongly connected to a bulk lead shown in Fig. 3.1
using the bosonization method following Ref. [23]. The basic strategy is the same
as in the spinless case discussed in Sec. 1.3.2. If the curvature of the constric-
tion near the center of the point contact is smooth, the system is essentially one-
dimensional (1D) [23] and is described by a Tomonaga-Luttinger liquid (TLL).
The width of the constriction is adjusted so that only a single transverse mode is
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allowed to tunnel through the point contact. Although the lead and the dot outside
the constriction are two-dimensional (2D), transport through the point contact de-
pends mainly on the one-dimensional behavior of electrons near the constriction.
Then we can replace the 2D parts away from the constriction with 1D half-infinite
leads, whose Hamiltonian is given in the bosonized form as

H0 =
∑
ν=ρ,σ

∫
dx
4π

[ uν
Kν

(
∂φν
∂x

)2

+ uνKν

(
∂θν
∂x

)2]
, (3.1)

where the subscriptions ρ and σ stand for a charge and spin mode, respectively.
Here, uν is the sound velocity, and the bosonic fields φν and θν satisfy the com-
mutation relation [φν(x), ∂θν′(x′)] = [θν(x), ∂φν′(x′)] = 2πiδνν′δ(x − x′). In the
followings, we ignore the short-range interaction (Kρ = Kσ = 1). The long-range
Coulomb interaction is taken into account through the charging energy in the dot
region as [23]

HC =
Q2

2C0
+ QVg '

1
π2 EC[φρ(x = 0) − πNg]2, (3.2)

where Ng ≡ −C0Vg/e. Note that the dot charge is expressed in terms of the bosonic
field by means of the relation Q = e

∫ ∞
0

dx(−∂xφ/π). We further assume a potential
barrier V0 δ(x) at the center of constriction. The backscattering at the potential
barrier is given by [23]

HV =
2V0

πvF
D cos φρ(x = 0) cos φσ(x = 0). (3.3)

Here, vF is the Fermi velocity and D is the bandwidth. The total Hamiltonian
H = H0 + HC + HV describes the present problem.

By integrating out the boson fields in the bulk part (x , 0), the effective action
is derived as

S ≡ S 0 + S C + S V , (3.4)

S 0 =
1

2πβ

∑
ν=ρ,σ

∑
ωn

|ωn||φ̃ν(ωn)|2, (3.5)

S C = U
∫

dτ [φρ(τ) − πNg]2, (3.6)

S V = V
∫

dτ cos φρ(τ) cos φσ(τ), (3.7)

where the spatial coordinate x is omitted, and φ̃ν denotes the Fourier component
of φν. We have defined U ≡ EC/π

2 and V ≡ 2V0D/πvF .
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If an in-plane magnetic field is applied to the system as in Ref. [63], elec-
trons are spin-polarized and the barrier height relatively shifts to V↑ = V0(1 − δ)
[V↓ = V0(1+ δ)] for electrons with up (down) spins, where δ is proportional to the
Zeeman energy. Then, S V is replaced with

S V = V
∫

dτ[cos φρ(τ) cos φσ(τ) + δ sin φρ(τ) sin φσ(τ)]. (3.8)

3.3 The path-integral Monte Carlo method

For simplicity, here we consider the case without the Zeeman effect (δ = 0).
Discretizing the imaginary time into J steps, we define the jth step on a dis-
cretized path as φν j ≡ φν( jβ/J), and its Fourier transform as φ̃νk ≡

∑
j φν je(2πi/J) jk−

πJNgδνρδk0. We thus obtain the discretized effective action as

S 0 + S C =
∑
ν=ρ,σ

J/2∑
k=0

1
2σνk

2 |φ̃νk|
2, (3.9)

S V = Vτc

J−1∑
j=0

cos φρ j cos φσ j, (3.10)

where τc = β/J. Note that the bandwidth D is related to the interval of the time
slice as D = 2π/τc. We adopt two kinds of the update scheme described in the
folloing subsections.

3.3.1 Local update

In a local update, for each pair of ν and k a value of φ̃νk is randomly chosen
following a normal distribution ∝ e−|φ̃νk |

2/(2σνk2) with variance.

σρ0
2 =

J
2Uτc

, σσ0
2 = ∞, (3.11)

σνJ/2
2 =

1
2

[ 1
2J
+

Uτc

J
δνρ

]−1

, (3.12)

σνk
2 =

1
4

[ k
J2 +

Uτc

J
δνρ

]−1

(k , 0, J/2). (3.13)

Then a new path φν j is obtained from the inverse Fourier transform, and is ac-
cepted with probability p = min{1, e−(S new

V −S old
V )}.
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3.3.2 Global update
The basic idea of the cluster algorithm is the same as that explained in Sec. 2.2.2.
We rewrite the effective action as

S 0 = −
∑
ν

∑
j< j′

κ j j′φν jφν j′ , (3.14)

S C = Uτc

∑
j

[φρ j − πNg]2, (3.15)

S V = Vτc

∑
j

cos φρ j cos φσ j, (3.16)

where the kernel is given by

κ j j′ = −
2
J2

J/2∑
k=−J/2+1

|k|e(2πi/J)( j− j′)k. (3.17)

We can design two types of cluster update as follows.
In a single-field cluster update, clusters for the charge and spin field are con-

structed separately with the bond probability between the jth and j′th site

pν j j′ = max{0, 1 − exp(−2κ j j′ϕν jϕν j′)}. (3.18)

Here we define the relative field ϕν j ≡ φν j−πMν measured from the mirror located
at φν = πMν with an integer Mν.

In a double-field cluster update, on the other hand, a pair of the jth and j′th
site for both the charge field and the spin field is connected using the probability

p j j′ =max
{
0, 1 − exp

(
−2

∑
ν

κ j j′ϕν jϕν j′

)}
, (3.19)

with a half integer Mν.
Clearly, S V remains unchanged after these global moves, and the strength of

backscattering does not matter. S C is invariant exceptionally in the single-field
case for the spin mode, but it generally changes in the other cases. Then the cluster
updates for the latter cases are accepted with the probability p = min{1, e−∆S C },
where the change in S C has the form

∆S C = 4πUτc(Ng − Mρ)
∑

j∈cluster

ϕρ j. (3.20)

The kinks, which run from a potential minimum to an adjacent one of the double-
cosine potential in Eq. (3.16), are inserted in the path by these two types of cluster
updates.
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Figure 3.2: Coulomb oscillation of the average charge of the quantum dot for
different temperatures J = 10, 20, 50, 100, 200, and 400. A bundle of curves
with smaller amplitude corresponds to Vτc = 1, and the other to Vτc = 2. Inset:
Comparison of the average charge for Vτc = 1 and 2 between our PIMC data at
J = 400 (crosses) and the analytic result for small V at zero temperature (solid
line).

3.4 Results and Discussion
In this section, we present our PIMC results. After showing the result of the
gate-voltage dependence of the dot charge in Sec. 4.4.1, we examine the logarith-
mic divergence of the capacitance in Sec. 4.4.2. Finally, we study the channel
anisotropy effect (δ , 0) in Sec 4.4.3. Uτc = 1/4 is fixed, and the temperature
is varied down to J = β/τc = 400. Without losing generality, we can restrict the
value of Ng in the range 0 ≤ Ng ≤ 1.

3.4.1 Coulomb oscillation of the dot charge
The average charge in the dot is evaluated as

〈Q〉 = e
π
〈φ̄ρ〉, φ̄ρ ≡

1
β

∫ β

0
dτ φρ(τ), (3.21)

where 〈O〉 ≡ Z−1
∫
DφρDφσOe−S denotes the expectation value of an observable

O. In Fig. 3.2, we plot 〈Q〉 for Vτc = 1 and 2 as a function of the gate voltage Ng.
As the temperature decreases (the inverse temperature J increases), the Coulomb
blockade is enhanced. If we focus on the lowest temperature J = 400, the curve
appears to converge except near the degeneracy point Ng = 1/2. We compare the
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Figure 3.3: Coulomb oscillation of the capacitance of the dot for different tem-
peratures J = 10, 20, 50, 100, 200, and 400. A bundle of curves with smaller
amplitude corresponds to Vτc = 1, and the other to Vτc = 2.

data of J = 400 with the analytic result for T = 0 in the strong tunneling limit
(V → 0). In Ref. [23], the charge field φρ is pinned down to πNg due to the large
charging energy T � EC < D, and the backscattering strength V is renormalized
by the charge fluctuation. As a result, the average charge is calculated for small V
(corresponding to strong tunneling) as

〈Q〉
e
= Ng +

2γ|r|2
π2 log(e |r|2 cos2 πNg) sin 2πNg, (3.22)

where r = V0/vF is a reflection coefficient, and γ = eC with the Euler’s constant
C ' 0.5772. The inset of the Fig. 3.2 shows the comparison for Vτc = 1 and
2 between our data of J = 400 and Eq. (3.22). For Vτc = 1, the analytic result
shown as a solid line is almost superposed on our data points; the expression
(3.22) based on the pinning of φρ describes well the Coulomb oscillation of 〈Q〉.
For Vτc = 2, on the other hand, our data points away from Ng = 1/2 disagree with
the analytic expression; the system is no longer in the strong tunneling regime for
such a large value of V . It should be noted that similar deviation from Eq. (3.22)
in the intermediate tunneling regime has been reported in the NRG results. [64]

3.4.2 Logarithmic divergence of the capacitance
Near Ng = 1/2 the oscillation curve in Fig. 3.2 depends on J even at lower tem-
peratures. This is related to the singularity derived from the two-channel Kondo
problem hidden in the Coulomb blockade system at the degeneracy point. To see



42 CHAPTER 3. COULOMB BLOCKADE IN AN OPEN QUANTUM DOT

 0

 1

 2

 3

 4

 5

 6

 10  100  1000

C
 / 

C
0

J

Ng=0.500

Ng=0.475

Ng=0.450

Ng=0.400

Figure 3.4: Temperature dependence of the capacitance of the dot for Vτc = 2.
The gate voltage Ng is varied from 0.15 to 0.50 (from bottom to top) at intervals
of 0.05. The curve for Ng = 0.475 is also shown.

the peculiar nature of the system more clearly, we now measure the capacitance
of the dot defined as

C = − ∂

∂Vg
〈Q〉 = e2

π2β[〈φ̄ρ2〉 − 〈φ̄ρ〉2]. (3.23)

In Fig. 3.3, we plot the capacitance for Vτc = 1 and 2 as a function of the gate
voltage Ng at low temperatures. The amplitude of the Coulomb oscillation of
the capacitance grows larger as J and V increase. The temperature dependence
strongly depends on the gate voltage; away from Ng = 1/2, the capacitance is
convergent at low temperatures whereas the peak at Ng = 1/2 keeps growing and
sharpening up to the lowest temperature J = 400.

In Fig. 3.4, we show the capacitance for intermediate tunneling Vτc = 2 as a
function of the inverse temperature J for different values of the gate voltage Ng. In
this figure, the temperature dependence of the capacitance is classified into three
different types: When the temperature decreases, (I) for Ng ≤ 0.40, the capaci-
tance decreases monotonically; (II) for Ng = 0.45 and 0.475, the capacitance once
increases, and decreases below a crossover temperature; (III) for Ng = 0.50, the
capacitance increases monotonically. In Ref. [23], it is suggested from analytic
results that the low-energy property of the Coulomb blockade system near the de-
generacy point (Ng = 1/2) is governed by the physics of the two-channel Kondo
problem for an arbitrary strength of tunneling. This prediction is supported by the
logarithmic divergence of the capacitance for the type III. The transient increase
in the capacitance for the type II is also a sign of the two-channel Kondo physics.
For Ng , 1/2, an intrinsic low energy cutoff in the strong tunneling limit (V → 0)
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is given by [23]

Γ =
8γ|r|2
π2 EC cos2 πNg. (3.24)

At low temperatures below Γ, the logarithmic divergence characteristic of the two-
channel Kondo model disappears. One can evaluate the order of the crossover
temperatures of the curves in Fig. 3.4 using the expression (3.24). For example,
the crossover temperatures for Ng = 0.475, 0.45, and 0.4 are estimated as J ' 182,
46, and 12, respectively.

In order to study in detail the logarithmic divergence of the capacitance, we
show the capacitance at the degeneracy point Ng = 1/2 in Fig. 3.5 as a function of
the inverse temperature J. The results for different backscattering strengths from
Vτc = 1/4 to Vτc = 15/4 are shown. Here, one can estimate the transmission
probability through the barrier using the expression T = 1/[1 + (V0/vF)2] in the
noninteracting case (U = 0); for example, Vτc = 1/4 corresponds to T ' 0.9961
(strong tunneling), while Vτc = 15/4 to T ' 0.5322 (intermediate tunneling).
One can see that our data points diverge logarithmically with decreasing temper-
ature for any value of V as far as our simulation is performed.

Next, we compare this logarithmic behavior of our data with the analytic re-
sults for the strong and weak tunneling limit. In Fig. 3.6, the coefficient derived
from the logarithmic fit of the capacitance is plotted as a function of V . Accord-
ing to the analytic calculation for the strong tunneling limit (V → 0) [23], the
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capacitance diverges at low temperatures as

C = C0

[
1 +

4γ|r|2
π

log
(EC

T

)]
. (3.25)

For small V , i.e., in the strong tunneling regime, our data points agree well with
the analytic result 4πγ|r|2C0/e2 ' 0.004429V2 shown as a solid line. For larger
values of V , on the other hand, they grows faster than the analytic result. Thus,
the analytic expression (3.25) fails for intermediate strength of tunneling. Never-
theless, the logarithmic divergence in Fig. 3.5 in this regime clearly indicates that
the present system is understood by the physics of the two-channel Kondo model
for any value of V .

In the present calculation, we could not reach the weak tunneling regime, be-
cause exponential decay of the Kondo temperature TK with respect to V makes
it difficult to observe the Kondo effect in the finite-temperature simulation. How-
ever, a qualitative discussion is possible by focusing on the asymptotic behavior of
the coefficient of the logarithm. The analytical expression for large V is obtained
by mapping to the two-channel Kondo model as [23, 66]

C ' 0.050
e2

TK
log

(TK

T

)
, TK = Dtν exp

(
− π

4tν

)
. (3.26)

Here t is the tunneling matrix element and ν is the density of states in the lead.
We can estimate tν from the barrier height V0 through the transmission probability
T = 4(πtν)2/[1 + (πtν)2]2 derived for U = 0. We thus obtain the relation (tν)−1 =

π[
√

(V0/vF)2 + 1+V0/vF]. If we assume that this relation holds also for U > 0, we
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can calculate the coefficient of the logarithm for large V from (3.26). However,
we found that the prefactor of TK given in Eq. (3.26) disagrees with our data
as found in the NRG calculation [64]. There seems to be several reasons for
this inconsistency. For example, the result (3.26) is obtained for the isotropic
Kondo model [66], while the present system is described by the anisotropic Kondo
model [22]; this difference may affect the prefactor quantitatively. On the other
hand, the exponent of TK deduced from our data is asymptotically consistent with
Eq. (3.26) in the weak tunneling region (V → ∞). In Fig. 3.6, we also show
∝ A exp(π/4tν) as an asymptote (solid line), where its prefactor A is adjusted by
hand.

3.4.3 Effect of channel anisotropy
In this subsection, we discuss the effect of channel anisotropy in the presence of an
in-plane magnetic field (δ , 0). The channel anisotropy term proportional to δ is,
together with the gate-voltage difference ε ≡ Ng − 1/2 from the degeneracy point,
a relevant perturbation to the two-channel Kondo fixed point in the context of the
renormalization group. Therefore, the divergence of the capacitance is expected to
be suppressed at low temperatures. Actually, the capacitance at zero temperature
for strong tunneling (V → 0) is calculated analytically as [63]

C = C0

[
1 +

4γ
π

(V0

vF

)2

(1 − δ2) log
( EC

Γ(Ng)

)
cos(2πNg)

]
. (3.27)

The low-energy cutoff takes the form Γ(Ng) = (8γEC/π
2)(V0/vF)2 min(sin2 πε, cos2 πε).

Note that the capacitance (3.27) remains finite except for the two-channel Kondo
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fixed point (ε, δ) = (0, 0). Because the above analytic results are obtained only in
the two limits (ε � δ and ε � δ), the whole Coulomb oscillation of the capaci-
tance C has not been calculated so far. We now show the Monte Carlo result for
the gate-dependence of the capacitance for Vτc = 1 at low temperatures (J = 400)
in Fig. 3.7. We see that the Coulomb oscillation of C is smoothly suppressed as δ
increases. As δ approaches 1, one spin-channel shows nearly perfect transmission
while the other shows nearly perfect reflection. This is why its capacitance has
cosine-like line shape near δ = 1, in good agreement with the spinless case [23].

3.5 Summary
In this chapter, we have demonstrated the PIMC simulation of the Coulomb block-
ade phenomena in a open quantum dot at low temperatures. The Coulomb oscilla-
tion of the average charge and capacitance of the dot are studied in the intermedi-
ate tunneling regime, where the analytical results for the two limits of strong and
weak tunneling are invalid. The amplitude of oscillation monotonically increases
with decreasing temperature or increasing the backscattering strength. We con-
firmed that logarithmic divergence of the capacitance appears at the degeneracy
point Ng = 1/2 even in the intermediate tunneling regime. This observation in-
dicates that the present system has a two-channel Kondo nature for an arbitrary
strength of tunneling. We also studied the effect of the channel anisotropy in the
presence of the Zeeman energy.

These conclusions agree well with the numerical renormalization group (NRG)
calculation by Lebanon et al. [64]. The NRG approach based on the tunneling
Hamiltonian has several advantages. For example, NRG can access ultra-low
temperatures because fine energy-meshes are taken near the Fermi energy. How-
ever, this method tends to need heavy calculation if one increases the number of
bases of states in quantum dots. Our approach by the PIMC simulation gives an
alternative way to treat transport in quantum dots, which is applicable to more
complicated models. Our results obtained here indicate that the PIMC method ac-
tually provides a powerful method to access low-temperature transport properties.
Based on this success, we consider dynamic response of quantum dot systems in
the next chapter.



Chapter 4

Charge Relaxation Resistance

In this chapter, we study dynamic response of a mesoscopic capacitor composed
of a quantum dot and a lead in the presence of strong electron interactions [67].
By means of perturbation theory, renormalization group technique, and the path-
integral Monte Carlo method, we analyze the charge relaxation resistance in the
whole range of dot-lead coupling. We predict that the charge relaxation resistance
is universal even in the presence of strong Coulomb blockade for the Luttinger pa-
rameter K > 1/2, while the Kosterlitz-Thouless transition dramatically influences
the universal nature of the charge relaxation resistance for K < 1/2.

This chapter is organized as follows. After stating introduction in Sec. 4.1,
we summarize the universal nature of the charge relaxation resistance based on
the scattering theory by Büttiker et al. in Sec. 4.2. In Sec. 4.3, we introduce
our model for a mesoscopic capacitor, and explain its basic property. The update
scheme in the PIMC method is described in Sec. 4.4, and our results are presented
in Sec. 4.5.

4.1 Introduction
There is renewed interest in a dynamical aspect of mesoscopic systems stimulated
by recent experiments observing low-frequency response of a mesoscopic capaci-
tor [9], which is schematically shown in the left panel of Fig. 4.1. The mesoscopic
capacitor is a quantum analog of classical RC circuit as shown in the right panel
of the figure; reflection on the point contact between the dot and the lead acts as a
resistor Rq, while capacitive coupling between the dot charge and the gate voltage
plays the role of a capacitor Cµ. In a classical RC circuit, the admittance is given
by the Kirchhoff’s law

G(ω) =
1

R − (iωC)−1 , (4.1)

47
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where the ac resistance R equals the dc resistance. However, the latter equality is
not the case in the mesoscopic capacitor. In their pioneering work [19], Büttiker et
al. have extended the Kirchhoff’s law (4.1) to the mesoscopic capacitor, replacing
C and R with their quantum counterparts Cµ and Rq, respectively. In the low-
frequency expansion of the admittance

G(ω) = −iωCµ + ω
2Cµ

2Rq + O(ω3), (ω � 1/RqCµ), (4.2)

they have proved that Rq equals half a resistance quantum h/2e2 irrespective of
transmission through the point contact. A recent experiment supports this theoret-
ical prediction [9]. Rq measured at such a low frequency region is named charge
relaxation resistance after the condition ω � 1/RqCµ, which clearly guarantees
charge relaxation in the dot. The universal quantization of the charge relaxation
resistance is remarkable because it contradicts a naive conjecture based on the ad-
ditive nature of impedance in classical ac circuits. Indeed, if the “resistor” and the
“capacitor” in the quantum RC circuit were independent building blocks as in the
classical case, the resistance would be described by the Landauer’s formula for
the point contact, explicitly dependent on the transmission probability through the
constriction.

So far the charge relaxation resistance has been studied theoretically within
mean-field-type approximation. As the size of the mesoscopic capacitor is re-
duced, however, we need to examine whether the electron interaction influences
the universal nature of the charge relaxation resistance. In this chapter, we study
the charge relaxation resistance in the presence of electron interactions, employ-
ing both analytical and numerical methods.

4.2 Universal charge relaxation resistance
In this section, we briefly summarize the self-consistent scattering theory by Büttiker
et al. [19] and derive the universal quantization of the charge relaxation resistance

Figure 4.1: Mesoscopic capacitor and its equivalent RC circuit. Reflection on the
point contact corresponds to Rq and capacitive coupling between the dot charge
and the gate voltage to Cµ.
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Rq = h/2e2. The essence of their theory is that the charging effect in the quan-
tum dot is taken into account self-consistently by considering an effective time-
dependent electric potential inside the dot denoted by Ug(t), which may differ
from the external ac gate voltage Vg(t). For simplicity, the electric potential of the
lead is fixed to zero. Then the dot charge can be expressed in three ways. First,
focusing on the capacitive coupling coupling between the gate electrode and the
dot, variation in the dot charge reads

−d〈Q〉 = Cg(dVg − dUg), (4.3)

where Cg denotes the geometrical capacitance. Next we can also express the
charge using the density of states in the dotD(ε):

−d〈Q〉 = e2D(ε)dUg ≡ CqdUg, (4.4)

which implies that the dot charge is capatively coupled to the lead by the capaci-
tance Cq ≡ e2D(ε). Combining the definition of the electrochemical capacitance
Cµ ≡ −d〈Q〉/dVg, i.e., −d〈Q〉 = CµdVg with Eqs. (4.3) and (4.4), we arrive at

CµdVg = Cg(dVg − dUg) = CqdUg, ∴
1

Cµ

=
1

Cg
+

1
Cq

(4.5)

Thus the introduction of the effective potential Ug results in the electrochmical
capacitance Cµ split into Cg and Cq in series as depicted in Fig. 4.2.

In the same way, when the gate voltage is oscillating with frequency ω, the
current through the circuit can be expressed in three ways:

I(ω) = −d〈Q〉
dt
= G(ω)Vg(ω) = −iωCg[Vg(ω) − Ug(ω)] = g(ω)Ug(ω) (4.6)

∴
1

G(ω)
=

1
g(ω)

+
1

−iωCg
, (4.7)

Figure 4.2: Equivalent circuit of a mesoscpic capacitor in the self-consistent scat-
tering theory. The serial combination of the geometrical capacitance Cg and the
quantum capacitance Cq results from the effective electric potential Ug associated
with the charging effect.
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where G(ω) and g(ω) are the total admittance and the admittance through the point
contact, respectively. Note that the scattering theory predicts

g(ω) =
e2

h

∫
dE Tr[1 − S†(E)S(E + ω)]

f (E) − f (E + ω)
ω

, (4.8)

where S(E) is the scattering matrix of the point contact and f (E) is the Fermi
distribution. By substitute Eq. (4.8) into Eq. (4.7) and expanding G(ω) in ω, we
obtain a low-frequency expression of the total admittance similar to Eq. (4.2).
Then comparison of each term in the the two expressions up to second order in ω
leads to

Cq =
1

2πi

∫
dE

(
− d f

dE

)
S†
∂S
∂E

, (4.9)

Rq =
h

2e2

∫
dE(−d f /dE)Tr[S†(E)∂S(E)/∂E]2

{
∫

dE(−d f /dE)Tr[S†(E)∂S(E)/∂E]}2
. (4.10)

At finite temperature, the charge relaxation resistance Rq depends on transmission
probability of the point contact, as well as the gate voltage, through the scattering
matrix S. At zero temperature, on the other hand, S’s in Eq. (4.10) are canceled
out due to −d f /dE = δ(E). As a result, the charge relaxation resistance Rq defined
at low frequencies ω � 1/RqCµ is quantized to h/2e2 per channel at T = 0. This
is the remarkable result Büttiker et al. obtained in their pioneering work [19].

We should note that the two-capacitor picture for the total capacitance (4.5)
breaks down when the charge fluctuation becomes large and the charging effect
cannot be well-described with the mean field Ug. This can be seen from, e.g., the
obvious inequality resulting from Eq. (4.5):

Cµ =
CgCq

Cg +Cq
≤ Cg. (4.11)

At zero temperature, Cq can be estimated from Eq. (4.9) as [9]

Cq =
e2

∆

1 − r2

1 − 2r cos(2πε/∆) + r2 , (4.12)

where r is the reflection coefficient and ε denotes the gate voltage relative to a
degeneracy point of two neighboring charge states. From Eq. (4.12), Cq oscillates
as a function of the gate voltage Vg and has sharp peaks at degeneracy points. The
peak height should be enhanced infinitely as r → 1, whereas Eq. (4.11) indicates
that it is saturated at Cg. If the latter were true, we could not any more expect a
sharp Coulomb staircase in the dot charge, which clearly contradicts our intuition.
In this sense, the self-consistent scattering theory cannot describe the degeneracy
points exactly. In the rest of this chapter, we develop a theory beyond the mean
field approximation and show that the effect of electron interaction is prominent
at the degeneracy points.
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4.3 Model

In this section, we first derive a bosonized model for the mesoscopic capacitor in
the presence of strong electron interaction. Then we explain the way of estimating
the charge relaxation resistance in the Matsubara formalizm. For comparison to
the self-consistent scattering theory [19], the mean-field approximation for our
bosonized model is also shown.

4.3.1 Bosonization

The mesoscopic capacitor of interest is shown in the left panel of Fig. 4.3. We first
assume that the transport property of the system is mainly determined by the one-
dimensionality near the center of the constriction. Then it is not necessary to treat
exactly the two-dimensional regions in the quantum dot and the lead, so that we
can consider the whole mesoscopic capacitor as a semi-infinite one-dimensional
system, which is described by the (non-chiral) Tomonaga-Luttinger model. The
present system is formulated by considering the open boundary condition on the
closed end of the quantum dot [68]. Here, we instead derive the effective action in
a different way; we consider a 1D quantum dot system with two point contacts and
pinch off one of the point contacts later so that the boundary condition is satisfied.
The bulk Hamiltonian for an infinite Tomonaga-Luttinger liquid is given by

H0 =

∫ ∞

−∞

dx
2π

 v
K

(
∂φ

∂x

)2

+ vK
(
∂θ

∂x

)2 . (4.13)

Here the canonically conjugated fields φ and θ satisfy the bosonic commutation
relation [φ(x), θ(x′)] = (iπ/2)sgn(x − x′), the Luttinger parameter K describes
short-range electron interaction around the constriction, and v ≡ vF/K denotes the
sound velocity. We define a quantum dot in the range of x1 < x < x2 by locating
point contacts at x1 = 0 and x2 = L with barrier height V1 and V2, respectively.
The electron scattering on the point contacts is expressed by the field operators of

Figure 4.3: Schematic illustration of an open quantum dot (left panel) and a quan-
tum Hall edge state (right panel).
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a right(left)-moving electron ψ+(−) as

HV = −
∑
i=1,2

Vi[ψ+†(xi)ψ−(xi) + H.c.], (4.14)

whose bosonized expression is given by

HV = −
∑

i

Vi

πvF
D cos[2{φ(xi) − kF xi}], (4.15)

with the bandwidth D. We take into account charging effect in the dot and capac-
itive coupling between the dot charge Q and the (static) gate voltage Vg by adding
the Hamiltonian

HC =
Q2

2Cg
+ QVg

(
Q ≡ e

π
[φ(0) − φ(L)]

)
, (4.16)

where Cg is the geometrical capacitance within x1 < x < x2. By integrating
out the fields away from x1 and x2, we arrive at the effective action in terms of
φ± ≡ φ(x1) ± φ(x2) as in Ref. [33]:

S =
1

2πKβ

∑
ν=±

∑
ωn

|ωn|
1 + νe−πK|ωn |/∆

|φ̃ν(ωn)|2 + 1
π2

e2

2Cg

∫
dτ

[
φ−(τ) −

πCgVg

|e|

]2

−
∑

i

ViD
πvF

∫
dτ cos[2{φ(xi, τ) − kF xi}], (x1 = 0, x2 = L) (4.17)

where the Fourier transform of φν reads

φ±(τ) ≡ 1
β

∑
ωn

φ̃±(ωn)e−iωnτ, φ̃ν(ωn) =
∫ β

0
dτφν(τ)eiωnτ. (4.18)

Now we return to the problem of the mesoscopic capacitor with a single lead by
pinching off the point contact at x = x2, i.e., V2 → ∞. As a result, φ(x2, τ) is
pinned at one of the minima of the cosine potential as

φ(x2, τ) = kF x2 + mπ (m = 0,±1,±2, · · · ). (4.19)

We thus obtain the effective action for the mesoscopic capacitor written with a
new field φ ≡ φ− + kF x2 = φ− + kF L:

S = S kin + S C + S V (4.20)

S kin =
1

πKβ

∑
ωn

|ωn|
1 − e−2πK|ωn |/∆

|φ̃(ωn)|2 (4.21)

S C =
1
π2 EC

∫
dτ[φ(τ) − πNg]2 (4.22)

S V = −V
∫

dτ cos[2φ(τ)] (4.23)
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where ∆ ≡ πvF/L and EC ≡ e2/2Cg are respectively the level spacing and the
charging energy in the quantum dot. V ≡ V1D/πvF denotes the reflection strength
of the point contact. Ng ≡ EC

−1[|e|Vg/2 + (kF L/π)(EC + ∆/2K2)] is the dimen-
sionless gate voltage. We note that the above effective action can be also obtained
in fractional quantum Hall edges shown in the right panel of Fig. 4.3 (see also
Appendix A). We have already seen a model similar to Eq. (4.20) in Chapter 4,
where the effective action (3.4) describes a large (∆ = 0) quantum dot system
with spinful electrons. Here we consider a quantum dot with finite size (∆ , 0) in
order to ensure coherent transport in the quantum dot, which is necessary for the
half-quantization of the charge relaxation resistance.

It is worthwhile examining the frequency-dependence of the factor γ(ωn) ≡
[1 − e−2πK|ωn |/∆]−1 in S kin, which is approximated in the high- and low-frequency
regions as [33]

γ(ωn) ≡ 1
1 − e−2πK|ωn |/∆

'
{

1, |ωn| � ∆
∆

2πK|ωn | +
1
2 , |ωn| � ∆ (4.24)

For ω1 = 2πT � ∆, discretization of the energy levels in the dot is smeared
out by the thermal fluctuations, hence incoherent transport in the dot. Indeed the
effective action for γ(ωn) = 1 takes the same form as that for a large quantum
dot (∆ = 0) with spinless electrons [23]. For ω1 � ∆, on the other hand, the
low-frequency behavior of γ(ωn) gives two effects; shift of the charging energy
EC by ∆/2K2 and multiplication of the interaction parameter K by 2. It is in such
a low-frequency regime that the half quantization of charge relaxation resistance
is observed. Indeed the doubled interaction parameter is the origin of the prefactor
1/2 in Rq as we see in the following sections.

4.3.2 Linear admittance
We formulate admittance within the linear response theory by applying an oscil-
lating gate voltage Vg+ δVg(t) to the quantum dot. By calculating the dynamics of
the dot charge Q = (e/π)φ− under the oscillating field H′(t) = QδVg(t), we obtain
the admittance at frequency ω

G(ω) = G(iωn → ω + iδ) (4.25)

G(iωn) =
e2

h
2|ωn|
π

∫ β

0
dτ〈φ(τ)φ(0)〉eiωnτ =

e2

h
2|ωn|
πβ
〈φ(−ωn)φ(ωn)〉. (4.26)

In analogy to the classical RC circuit, we split the impedance into the real part and
the imaginary part

1
G(ω)

= R(ω) +
1

−iωC(ω)
. (4.27)
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Here we assumed that both the resistance R and the capacitance C in general de-
pend on ω. The RC time defined as τRC(ω) ≡ R(ω)C(ω) is the time scale of charge
relaxation in the dot. If the the condition ω � 1/τRC(ω) holds, which is required
for charge relaxation at frequency ω, then the admittance can be expanded at low
frequencies:

G(ω) = −iωC(0) + ω2[{C(0)}2R(0) − iC′(0)] + O(ω3). (4.28)

Comparing this with the expansion (4.2), we find the relations

Cµ = C(0), Rq = R(0)
[
1 − i

C′(0)
τRC(0)C(0)

]
. (4.29)

If we assume that the ratio C′(ω)/C(ω) diminishes faster than τRC(ω) as ω → 0,
we can estimate the charge relaxation resistance as Rq ' R(ω → 0). In what
follows we adopt this assumption. We should note that the expansion (4.28) is
not always available because it is possible that τRC(ω) diverges faster than 1/ω
with lowering ω. In such a situation, R(ω → 0) can not be interpreted as charge
relaxation resistance in the sense that the gate voltage oscillates faster than charge
relaxation occurs in the dot. Instead let us call R(ω → 0) just low-frequency
resistance so that it is well-defined whether the dot charge relaxes or not. We can
estimate the low-frequency resistance using Eq. (4.27), or equivalently analytical
continuation from the Matsubara representation:

R(ω→ 0) = lim
iωn→0

R(iωn) with R(iωn) ≡ 1
G(iωn)

− 1
ωnC(iωn)

. (4.30)

Here G(iωn) has been already defined in Eq. (4.26), while we evaluate C(iωn → 0)
with the static capacitance, i.e.,

Cµ = C(iωn → 0) =
e2

π2β[〈φ̄2〉 − 〈φ̄〉2]
(
φ̄ ≡ 1

β

∫ β

0
dτφ(τ)

)
. (4.31)

4.3.3 Mean field theory
To confirm that the effective action (4.20) correctly describe the mesoscopic ca-
pacitor, we here calculate the electrochemical capacitance Cµ within the Hartree
approximation to reproduce the results obtained in the self-consistent scattering
theory [19, 20]. In the Hartree approximation, it is assumed that fluctuation of the
dot charge ∝ φ(τ)− 〈φ〉 is small enough that the term ∝ [φ(τ)− 〈φ〉]2 is negligible.
We thus obtain the mean-field effective action (4.20)

S MF = S kin + S V +
eUg

π

∫
dτφ(τ), (4.32)
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where

Ug ≡ Vg +
2〈φ〉
πe

EC −
2kF L
π2

(
EC +

∆

2K2

)
(4.33)

is the effective gate voltage coupled to the dot charge 〈Q〉 = (e/π)〈φ〉. If the
density of states in the quantum dot is denoted byD(ε), variation of the dot charge
is given by d〈Q〉 = −e2D(ε)dUg, so that Eq. (4.33) leads to the self-consistent
condition for the effective gate voltage Ug:

−e2D(ε)dUg = Cg(dUg − dVg), (4.34)

By using this condition, one can easily reproduce the electrochemical capacitance
in Refs. [19, 20]

Cµ ≡ −
∂〈Q〉
∂Vg

=

(
1 −

Cµ

Cg

)
e2D(ε) ∴

1
Cµ

=
1

Cg
+

1
Cq
, (4.35)

where Cq ≡ e2D(ε). If K = 1, the present model can be put back to the nonin-
teracting electron system. Then the self-consistent scattering theory [19, 20] with
the effective gate voltage Ug defined in Eq. (4.33) leads to Eqs. (4.9) and (4.10).
The reflection coefficient in the point contact is expressed using the parameter in
the bosonized model (4.20) as r = πV/D with the bandwidth D.

4.4 The path-integral Monte Carlo method

The setup of the path-integral Monte Carlo method that we describe here is similar
to that for the impurity problem in a spinless TLL illustrated in Sec. 2.2. Using
the discretized path φ j ≡ φ( jβ/J) ( j = 0, 1, · · · , J − 1) and its Fourier transform
φ̃k ≡

∑
j φ je(2πi/J) jk − πJNg(1 + ∆/2K2EC), we obtain the discretized action

S =
J/2∑
k=0

1
2σk

2 |φ̃k|2 − Vτc

J∑
j=0

cos[2φ j], (4.36)

where τc ≡ β/J is the short time cutoff.
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4.4.1 Local update

In a local update, for each k a value of φ̃k is randomly chosen following a normal
distribution e−|φ̃k |2/2σk

2
with variance

σ0
2 =

π2J
2(EC + ∆/2K2)τc

, (4.37)

σJ/2
2 =

1
2

[
1

KJ
1

1 − e−2π2K/∆τc
+

ECτc

π2J

]−1

, (4.38)

σk
2 =

1
4

[
2k

KJ2

1
1 − e−(2π)2K|k|/J∆τc

+
ECτc

π2J

]−1

(k , 0, J/2), (4.39)

Then a new path φ j is obtained from the inverse Fourier transform and is accepted
with probability p = {1, e−(S V

new−S V
old)}.

4.4.2 Global update

The basic idea of the cluster algorithm is the same as that explained in Sec. 2.2.2
except that the present model has the charging energy. We rewrite the effective
action in the imaginary-time representation

S kin = −
∑
j< j′

κ j j′φ jφ j′ , (4.40)

S C =
1
π2 ECτc

J−1∑
j=0

[φ j − πNg]2, (4.41)

S V = −Vτc

j−1∑
j=0

cos[2φ j], (4.42)

where the interaction kernel κ j j′ is defined as

κ j j′ = −
4

KJ2

J/2∑
k=−J/2+1

|k|
1 − e−(2π)2K|k|/J∆τc

e−
2πi
J k( j− j′). (4.43)

Each pair of jth and j′th sites is connected with bond probability

p j j′ = max{0, 1 − e−2κ j j′ (φ j−π/2)(φ j′−π/2)}, (4.44)

and then all the sites φ j are flipped with respect to φmirror = π/2, i.e., φ j
(new) =

π − φ j
(old).
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4.5 Results and discussion

In this section, we investigate the dynamic response of the mesoscopic capacitor
described by the effective action (4.20) using analytical and numerical approaches.
In the small barrier limit V → 0, the capacitance Cµ and the charge relaxation re-
sistance Rq is calculated perturbatively in V 1. In the large barrier limit V → ∞, on
the other hand, we consider the tunneling of an electron through the point contact
as perturbation and discuss scaling of tunneling strength and charge fluctuation.
Finally, we demonstrate the path-integral Monte Carlo simulation to study the
intermediate region directly.

4.5.1 Weak barrier limit: Perturbation theory

It is clear from Eq. (4.26) that if we can estimate the correlation function c(ωn) ≡
〈φ(−ωn)φ(ωn)〉, we can calculate the linear admittance of the mesoscopic capacitor
as

G(iωn) =
e2

h
2|ωn|
πβ

c(ωn). (4.45)

However, estimation of correlation functions is in general not an easy task. In
our case, reflection of electrons on the point contact causes a cosine potential
for the field φ, which makes it difficult to solve the problem exactly. Here we
focus on the weak barrier limit V → 0 and develop a perturbation theory. We
calculate the admittance up to second order in V and evaluate the electrochemical
capacitance Cµ = Cµ

(0) + Cµ
(1) + Cµ

(2) and the charge relaxation resistance Rq =

Rµ
(0) + Rq

(1) + Rq
(2).

We begin with the partition function in the path-integral representation

Z[ξ] =
∫

Dφ exp

−S − 1
β

∑
ωn

ξ(−ωn)φ̃(ωn)

 , (4.46)

where S is the effective action (4.20). ξ is the counting field and will be set to zero
in the end of the calculation. One can check that the correlation function c(ωn) is
expressed in terms of the partition function (4.46) as

c(ωn) ≡ 〈φ(−ωn)φ(ωn)〉 = β2 1
Z[ξ]

∂2Z[ξ]
∂ξ(ωn)∂ξ(−ωn)

∣∣∣∣∣∣
ξ→0

. (4.47)

1The results in 4.5.1 are based on calculation by one of the collaborators, T. Jonckheere.
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The perturbative expansion of the right hand side in orders of V reads

β2 1
Z(0) + Z(1) + Z(2) + · · ·

∂2(Z(0) + Z(1) + Z(2) + · · · )
∂ξ(ωn)∂ξ(−ωn)

(4.48)

= β2 1
Z(0)

∂2Z(0)

∂ξ(ωn)∂ξ(−ωn)

+ β2 1
Z(0)

[
∂2Z(1)

∂ξ(ωn)∂ξ(−ωn)
− Z(1)

Z(0)

∂2Z(0)

∂ξ(ωn)∂ξ(−ωn)

]
+ β2 1

Z(0)

[
∂2Z(2)

∂ξ(ωn)∂ξ(−ωn)
− Z(2)

Z(0)

∂2Z(0)

∂ξ(ωn)∂ξ(−ωn)

− Z(1)

Z(0)

{
∂2Z(1)

∂ξ(ωn)∂ξ(−ωn)
− Z(1)

Z(0)

∂2Z(0)

∂ξ(ωn)∂ξ(−ωn)

}]
+ · · · , (4.49)

where Z(m) denotes mth order contribution to the partition function. From this, we
obtain perturbative contributions to the correlation function up to second order:

c(0)(ωn) ≡ β2 1
Z(0)

∂2Z(0)

∂ξ(ωn)∂ξ(−ωn)
(4.50)

c(1)(ωn) ≡ β2 1
Z(0)

∂2Z(1)

∂ξ(ωn)∂ξ(−ωn)
− Z(1)

Z(0) c(0)(ωn) (4.51)

c(2)(ωn) ≡ β2 1
Z(0)

∂2Z(2)

∂ξ(ωn)∂ξ(−ωn)
− Z(2)

Z(0) c(0)(ωn) − Z(1)

Z(0) c(1)(ωn). (4.52)

To calculate each contribution c(m), we need to evaluate Z(m) and its second deriva-
tive ∂2Z(m)/∂ξ(−ωn)∂ξ(ωn). For this purpose, let us first express the total action in
the following form

S kin + S C + S V +
1
β

∑
ωn

ξ(−ωn)φ̃(ωn) (4.53)

=
1
β

∑
ωn

[
φ̃(−ωn)A(ωn)φ̃(ωn) +

{
ξ(−ωn) −

2Ngδn0

π
βEC

}
φ̃(ωn)

]

− V
2

∑
σ=±

∫
dτ exp

2iσ
β

∑
ωn

φ̃(ωn)e−iωnτ

 (4.54)

with

A(ωn) ≡ 1
πK

|ωn|
1 − e−2πK|ωn |/∆

+
1
π2 EC. (4.55)
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Expanding Z[ξ] in V and performing the path integral in φ, we obtain

Z(m)[ξ] =
1

m!

(V
2

)m ∑
σ1=±
· · ·

∑
σm=±

∫
dτ1 · · · dτm

× e−
1
β

∑
ωn

[
1
2 ξ(−ωn)− Ngδn0βEC

π −i
∑m

l=1 σle−iωnτl
]

1
A(ωn)

[
1
2 ξ(ωn)− Ngδn0βEC

π −i
∑m

l=1 σleiωnτl
]

(4.56)
ξ→0−→ 1

m!

(V
2

)m ∑
σ1···σm

∫
dτ1 · · · dτm

× e−
1
β

∑
ωn

[
Ngδn0βEC

π +i
∑

l σle−iωnτl
]

1
A(ωn)

[
Ngδn0βEC

π +i
∑

l σleiωnτl
]
. (4.57)

Then the second derivative of Z(m)[ξ] reads

∂2Z(m)[ξ]
∂ξ(ωn)∂ξ(−ωn)

(4.58)

=
Z(m)[ξ]

2βA(ωn)
+

1
m!

(V
2

)m ∑
σ1···σm

∫
dτ1 · · · dτm

1
[A(ωn)]2

×
1
2
ξ(−ωn) −

Ngδn0

π
βEC − i

∑
l

σle−iωnτl

 1
2
ξ(ωn) −

Ngδn0

π
βEC − i

∑
l

σleiωnτl


× e

1
β

∑
ωn

[
1
2 ξ(−ωn)− Ngδn0βEC

π −i
∑

l σle−iωnσl
]

1
A(ωn)

[
1
2 ξ(ωn)− Ngδn0βEC

π −i
∑

l σleiωnσl
]

(4.59)
ξ→0−→ Z(m)[0]

2βA(ωn)
+

1
m!

(V
2

)m ∑
σ1···σm

∫
dτ1 · · · dτm

1
[A(ωn)]2

×
Ngδn0

π
βEC + i

∑
l

σle−iωnτl

 Ngδn0

π
βEC + i

∑
l

σleiωnτl


× e

1
β

∑
ωn

[
Ngδn0
π βEC+i

∑
l σle−iωnσl

]
1

A(ωn)

[
Ngδn0
π βEC+i

∑
l σleiωnσl

]
. (4.60)

Substituting Eqs. (4.57) and (4.60) into the the correlation functions in each order
(4.50)-(4.52), we can expand perturbatively the admittance (4.45) as

G(0)(ωn) =
e2

h
|ωn|
π

1
A(ωn)

, (4.61)

G(1)(ωn) = −e2

h
|ωn|
π

2V
[A(ωn)]2

√
F+(0) cos 2πN, (4.62)

G(2)(ωn) =
e2

h
|ωn|
π

2V2

[A(ωn)]2 F+(0)I(ωn), (4.63)
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where we have defined two functions

F±(τ) ≡ exp

−1
β

∑
ωn

±2
A(ωn)

cosωnτ

 , (4.64)

I(ωn) ≡
∫ β/2

0
dτ[{1 − F+(τ)(1 + cosωnτ)} cos 2πN + {1 − F−(τ)(1 − cosωnτ)}]

(4.65)

and redefined the dimensionless gate voltage N as

N ≡ EC

ET
Ng =

|e|Vg

2ET
+

kF L
2

with ET = EC +
∆

2K2 . (4.66)

The fact that Eqs. (4.61)-(4.63) are analytic at ωn → 0 means that one can always
expand the admittance at low frequency as Eq. (4.2) in the small barrier limit V →
0. As a result the charge relaxation resistance is well-defined as the factor Rq in the
term proportional to ωn

2. Performing the Maclaurin expansion for the admittance,
we obtain perturbative contributions up to second order to the electrochemical
capacitance

Cµ
(0) =

e2

h
π

ET
(4.67)

Cµ
(0) = −Cµ

(0) 2π2

ET
V

√
F+(0) cos 2πN (4.68)

Cµ
(0) = Cµ

(0) 2π2

ET
V2F+(0)I(ωn → 0) cos 4πN (4.69)

and the charge relaxation resistance

Rq
(0) =

h
2Ke2 , Rq

(1) = 0, Rq
(2) = 0. (4.70)

It is clear from Eqs. (4.67)-(4.69) that one Coulomb oscillation occurs in the elec-
trochemical capacitance Cµ

(0) + Cµ
(1) + Cµ

(2) while N is shifted by 1, i.e., the
electrochemical potential eVg is shifted by the expanded level spacing 2ET =

2EC + ∆/K2. Thus we focus on the interval 0 ≤ N < 1 in the rest of this chapter.
At zero temperature, the sums and the integration of Eqs. (4.64) and (4.65) can
be done analytically in certain cases. For example, in the case of K = 1 one has
F+(0) = (ET/πD)2 if EC,∆ � D, so that one can show that

Cµ =
e2

2ET
λ(N) (4.71)
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where λ(N) = 1 − 2r cos 2πN + 2r2 cos 4πN is the oscillating factor with the
reflection coefficient r ' πV/D. Eq. (4.71) suggests that the electrochemical ca-
pacitance is the serial combination of two capacitances

Cgλ(N) and Cq ≡
e2

∆
λ(N), (4.72)

both of which similarly oscillate as λ(N). It is instructive to compare this result
with that of the mean field theory [19], where the electrochemical capacitance
Cµ is split into a constant geometrical capacitance Cg and an oscillating quantum
capacitance Cq, unlike in Eq. (4.72). Cq in Eq. (4.72) coincides with the develop-
ment of the noninteracting formula (4.12) in powers of r. Thus the inconsistency
between the perturbation theory and the mean field theory is that the geometri-
cal capacitance Cg is multiplied by the oscillating factor λ(N) in the former case.
This reflects the fact that the mean field theory neglects charge fluctuations due to
charging effect, which is in fact enhanced near the degeneracy point N = 1/2, i.e.,
〈Q〉 ' e/2. Indeed, in the weak barrier limit r → 0, the deviation of λ(N) from 1
remains small for N , 1/2, whereas it becomes large for N = 1/2.

Eq. (4.70) indicates that the charge relaxation resistance Rq is quantized at
h/2Ke2 per channel irrespective of the barrier height V and the gate voltage Vg (at
least in the weak barrier limit V → 0). In particular at K = 1 we reproduces Rq =

h/2e2 predicted in Refs.[19, 21]. Surprisingly, the universal quantization is exact
up to second order in V , which implies that this behavior is preserved in higher
orders. In addition, we can see from Eq. (4.70) that the long-range interaction in
the dot EC has no influence on Rq, while the bulk short-range interaction described
by K explicitly modifies the quantized value of Rq.

Figure 4.4: Typical path of φ near the degeneracy point 〈Q〉 ' e/2 in the strong
barrier limit V → ∞. s and t denotes the width and the tunneling coefficient
between the potential minima, respectively.
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4.5.2 Strong barrier limit: Renormalization group
In the strong barrier limit, the lead and the quantum dot are almost disconnected,
so that most of electrons incident to the point contact are reflected. In this limit,
we can treat the transmission coefficient t perturbatively. Near the degeneracy
point 〈Q〉 ' e/2 the bosonic field φ is subject to a double well potential whose
minima corresponds to the two charge states 〈Q〉 ' 0 and 〈Q〉 ' e/2 as shown in
Fig. 4.4. φ spends most of the time in either of the minima and sometimes a kink
structure between them appears for infinitesimally short time. In such a situation,
we can employ the dilute instanton gas approximation (DIGA) [46] and express
the path with n pairs of instanton and anti-instanton as

φ(τ) ' π
2n∑
j=1

s jΘ(τ − τ j) +
π

2
(1 − s) (4.73)

where Θ(τ − τ j) is the step function describing a kink structure at the imaginary
time τ j. s is the width between the well minima (0 ≤ s ≤ 1) as shown in Fig. 4.4,
and s j ≡ s(−1) j−1 represents the “charge” of an (anti-)instanton. Note that the ex-
pression (4.73) has reduced the degrees of freedom of the path to a set of (s j, τ j)’s,
and as a result the perpendicular parts of the path in Fig. 4.4 are of less importance.
We will take into account the shape of an instanton later. Let us derive the effec-
tive action in the DIGA representation by substituting Eq. (4.73) to Eq. (4.20).
First, the Fourier transform of the step function Θ(τ) = (i/β)

∑
ωn

e−iωnτ/(ωn + iη)
leads to the kinetic term written with s j and τ j:

S kin =
π

Kβ

∑
j,k

s jsk

∑
ωn

eiωn(τ j−τk)

|ωn|(1 − e−2πK|ωn |/∆)
. (4.74)

Since the long-time property of the system is important at low energy, the high-
frequency terms in

∑
ωn

contribute little to the sum, hence a high-energy cutoff
∼ |τ j − τk|−1. Then recalling the relation (4.24), we can split the kinetic term into
two parts at low frequencies |ωn| � |τ j − τk|−1 � ∆:

S kin '
π

Kβ

∑
j,k

s jsk

∑
ωn

(
1

2|ωn|
+
∆

2πK
1
ωn

2

)
eiωn(τ j−τk) (4.75)

= − 1
2K

∑
j,k

s jsk log
∣∣∣∣∣τ j − τk

τc

∣∣∣∣∣ − ∆2K2

∑
j

s jτ j. (4.76)

With respect to S V and S C, on the other hand, we can make most of the fact that
cos[2φ(τ)] and [φ(τ)− π/2]2 are approximately independent of τ. Therefore S V is
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almost constant, while S C can be rewritten as

S C ' (2Ng − 1)EC

∑
j

s jτ j, (4.77)

where we have neglected some constant terms. Finally, we assume that the de-
tailed shapes of instantons are characterized by a single parameter, i.e., tunneling
amplitude t ∼ e−S inst . We thus complete the DIGA of the effective action for the
path with 2n (anti-)instantons. The partition function of the system is given by

Z =
∞∑

n=0

(
t
τc

)2n ∫ β

0
dτ2n

∫ τ2n

0
dτ2n−1 · · ·

∫ τ2

0
dτ1

× exp

 s2

2K

∑
j,k

(−1) j−k log
∣∣∣∣∣τ j − τk

τc

∣∣∣∣∣ − us
∑

j

(−1) j−1τ j

 (4.78)

where u ≡ (2N − 1)ET denotes the small deviation from the degeneracy point.
Note that partition functions similar to Eq. (4.46) also appear in the context of the
Kondo problem [46], one-dimensional long-range Ising chains [47], and dissipa-
tive Josephson junctions [49], which suggests a potential phase transition in the
mesoscopic capacitor. Indeed, if we assume that t is perturbatively small, we can
identify the scaling equations using the renormalization group technique [46, 49]:

dt
dl
=

(
1 − s2

2K

)
t,

ds2

dl
= −4s2t2, (4.79)

dus
dl
= us(1 − 2t2) (4.80)

which are familiar in the context of a Kosterlitz Thouless transition in the two-
dimensional XY model.

Let us first focus on Eq. (4.80), which suggests that no further arguments are
needed when one deviates from the degeneracy point, i.e., u , 0. The double-well
potential due to S C + S V approximates near the degeneracy point N ' 1/2 as

−1
π

u
[
φ(τ) − π

2

]
− V cos[2φ(τ)], (4.81)

so that the difference between the two lowest minima is of the order of u as shown
in the left panned of Fig. 4.5. At high temperatures, this difference is blurred by
thermal fluctuations and the two charge states remain almost degenerate. Upon
decreasing temperature, however, the difference between the two minima fur-
ther increases because Eq. (4.80) predicts that u , 0 is always relevant. Thus,
a crossover occurs around some temperature ∼ u, below which excitations from
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the lower minimum (φ ∼ π) to the higher (φ ∼ 0) are exponentially suppressed. As
a result, the system reaches a fixed point with an integral number of dot electrons
at T = 0. At the fixed point, φ is trapped in an effective harmonic potential shown
as a dotted curve in Fig. 4.5. This situation is quite similar to the case of zero
backscattering V = 0, which we have already discussed in Sec. 4.5.1. Therefore
we can conclude from Eq. (4.70) that the charge relaxation resistance is always

Rq =
h

2Ke2 (u , 0). (4.82)

Note that this result is independent of Eqs. (4.79), and only the flow of u is impor-
tant for its universality. In addition, the effective harmonic potential suppresses the
charge fluctuation as T → 0 and, as a result, always validates the two-capacitor
picture in Fig. 4.2 except for u = 0.

For the charge degenerate case N = 1/2(u = 0), u is marginal and therefore
Eqs. (4.79), called the Kosterlitz equations, determine the low-energy properties
of the mesoscopic capacitor. This case is related to the Kondo problem in the
sense that the neighboring two charge states act as a pseudo spin. It is well-known
that for small B ≡ 1 − s2/2K, the solution of Eqs. (4.79) is a set of hyperbolic
curves shown in Fig. 4.5:

B2 − 4t2 = const. (4.83)

and the system undergoes the Kosterlitz-Thouless (KT) transition when crossing
the separatrix 2t + B = 0. One can see from Fig. 4.5 that if 2t + B > 0, t → ∞
and s2 → 0, while otherwise t → 0 and s2 → const. For K > 1/2, the tunneling
strength t always grows upon reducing the temperature, and the system reaches the
Kondo fixed point where the dot is strongly coupled to the reservoir. An electron
freely tunnels in and out of the dot irrespective of the initial barrier height V .

Figure 4.5: (left) Double-well potential away from the degeneracy point N = 1/2.
The difference between the two minima is of the order of u. (right) Flow diagram
for the tunneling amplitude t and B ≡ 1−s2/2K. The tendency of the flow changes
on the separatrix 2t + B = 0.
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We again arrive at the case where V = 0 is effectively achieved as in the non-
degenerate case u , 0 2 and therefore

Rq =
h

2Ke2 (u = 0,K > 1/2). (4.84)

In particular at K = 1, by combining Eq. (4.82) and Eq. (4.84), we can reproduce
the quantized charge relaxation resistance Rq = h/2e2 irrespective of the barrier
height V nor the gate voltage Vg [19, 21]. However we should emphasize that in
the present picture the universal Rq at u = 0 is due to the Kondo effect associated
with the pseudo spin. In the mean field theories [19, 21], on the other hand, the
universality results from the mean field approximation, which is generally invalid
at the degeneracy point u = 0 (N = 1/2) doe to large charge fluctuations. However
at K = 1(> 1/2) the Kondo effect also suppresses the charge fluctuation ∼ s2 → 0,
and the mean field approximation is validated accidentally. This suggests that if
s2 remains finite at T = 0, the charge relaxation resistance may not be universal at
u = 0. Indeed, for K < 1/2 there is the possibility that at sufficiently weak trans-
mission t (large V), the RG flow always drives the system into a weak coupling
configuration with specified charge. Then the charge fluctuation remains finite, so
that the capacitance diverges as Cµ ∼ βs2 ∝ T−1. This situation corresponds to
the region 2t + B < 0 in Fig. 4.5. The KT transition of a static occupation 〈Q〉/e
in a similar setup has been predicted in Ref. [69]. We will discuss how the KT
transition influences a dynamic property of the mesoscopic capacitor in the next
section.

4.5.3 Intermediate region: The PIMC method

In the weak barrier limit (Sec. 4.5.1), the perturbation theory has proved that the
charge relaxation resistance is universal (Rq = h/2e2) even in the presence of inter-
actions. In the strong barrier limit (Sec. 4.5.2), on the other hand, the RG treatment
indicates that, if K < 1/2, the system undergoes the KT transition at the degener-
acy point. To study the non-perturbative regime, we apply the path-integral Monte
Carlo to the action for the discretized path φ(τ = jτc) ( j = 0, 1, · · · , J − 1) with
the short-time cutoff τc. In what follows, we use the parameters Dτc = 2π and
ECτc = ∆τc/2K2 = (π/2)2. The top (bottom) row of Fig. 4.6 shows the calculated
capacitance Cµ as a function of V at J = 100 and K = 1 (K = 1/3). The left
and right columns correspond to the non-degenerate case (N = 0) and the charge
degenerate case (N = 1/2), respectively. With increasing V the Coulomb staircase
becomes sharper, which results in the decrease (increase) in Cµ ≡ −∂〈Q〉/∂Vg in

2However, the present case is different from the case of u , 0 in that the universality is essen-
tially due to the renormalization of t or V , not that of u.
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Figure 4.6: Capacitance Cµ as a function of the backscattering strength V obtained
as inverse temperature J = 100 with Monte Carlo computations (dashed lines).
The solid lines show the predictions of the perturbative calculations up to second
order. Temperature dependence is shown in the bottom right panel, where the
vertical axis is measured on a logarithmic scale.

the case of N = 0 (N = 1/2). The second-order perturbation theory, shown as
solid lines, displays an excellent agreement for small V . Especially, it is remark-
able that only for the case of K = 1/3 and N = 1/2 (the right bottom panel of
Fig. 4.6), Cµ exhibits an abrupt increase at a finite V , signaling the KT transition
mentioned in Sec. 4.5.2. Indeed, one can see that Cµ grows as ∝ 1/T in the large
barrier region, reflecting finite charge fluctuation ∼ s2.

We now describe the effect of the KT transition on the dynamical properties.
As described in Sec. 4.3.2, the low-frequency resistance R(ω → 0) of the point
contact can be estimated from analytical continuation of the impedance in the
Matsubara representation:

R(iωn) ≡ 1
G(iωn)

− 1
ωnCµ

, (4.85)

where G(iωn) and Cµ are defined in Eqs. (4.26) and (4.31), respectively. To obtain
the value of R(ω → 0) = R(iωn → 0) by analytical continuation, we plot R(iωn)
as a function of ωn and extrapolate first five points into ωn → 0. Note that τRC =
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R(0)Cµ. In the left panel of Fig. 4.7, we plot R(0) for K = 1, 1/3 and 1/5 as a
function of V at temperature J = 100. For K = 1, R(0) equals h/2e2 irrespective of
V , in agreement with the universal charge relaxation resistance [19, 21]. For K =
1/3 and 1/5, the same behavior is observed in the weak barrier region, whereas
R(0) is abruptly enhanced with increasing V , reflecting the RG flow to the weak
coupling regime due to the KT transition. The temperature dependence of R(0) for
K = 1/3 is shown in the right panel of Fig 4.7, which indicates that R(0) diverges
as T → 0 (J → ∞) in the strong barrier region.

As mentioned in the previous subsection, in the non-generate case u , 0, the
divergence of R(0) stops at some temperature and the system crossovers to a fixed
point with an integral number of dot electrons. In Fig. 4.8, we plot temperature
dependence of R(0) for 4Vτc = 8 and K = 1/3 in the non-degenerate cases N =
0, 0.45, 0.475 and 0.4875. For comparison, monotonic increase in R(0) in the
degenerate case N = 0.5 is also shown. the large error bars reflect the fact that
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Figure 4.9: Product G(iωn = 0)R(iωn = 0) and ratio τRC/τcoh = R(iωn = 0)CµT
for K = 1/3 as a function of the backscattering strength V , for different inverse
temperatures J. The crossing of the curves in the right panel gives a good estimate
of the transition point.

the cluster algorithm is not suitable to asymmetric potentials especially near the
corssover temperature. The crossover temperatures can be estimated from Tc ∼ u,
i.e., Jc ∼ 1/|2N − 1|ETτc = 1/π2|N − 1/2|. One can see from the data for N =
0.45, 0.475 and 0.4875 that the starting points of crossover shifts as ∝ 1/|N − 1/2|
as expected.

The KT transition plays a crucial role in the relevance of the universal charge
relaxation resistance. If 2t + B > 0, the system scales to the weak barrier limit,
where τRC is independent of temperature. If 2t + B < 0, on the other hand, the
scaling equations (4.79) predict s2 → const. and t ∝ T−B, so that τRC roughly
scales as ∝ T−1(T 2B + const.), which grows faster than the (thermal) coherence
time τcoh ∝ 1/T as temperature is lowered. These observations suggest that if
2t + B > 0 coherent transport can be realized by lowering temperature to guaran-
tee τRC < τcoh, while if 2t + B < 0 electronic transport in the dot decoheres before
charge relaxation is achieved. In the latter case, the quantum dot effectively acts
as a reservoir and consequently the dynamical property of the system is governed
by transport through the point contact between the two “reservoirs”. Therefore the
V-dependent low-frequency resistance observed in the inset of Fig. 4.7 reflects the
revival of the Landauer-type transport. To see this behavior more clearly, we plot
in Fig. 4.9 the product G(iωn → 0)R(iωn → 0) for K = 1/3 as a function of V .
In the strong barrier region, G(0) is finite and equal to [R(0)]−1, which is a fa-
miliar property of transport through a point contact. Upon decreasing V , however,
G(0)R(0) is suppressed since G(0) decays to zero because of charging up, although
R(0) → Rq is finite. Moreover, we see that the coherent region G(0)R(0) = 0 ex-
tends to larger V upon lowering temperature. Finally, we determine the phase
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Figure 4.10: Schematic phase diagram in the degenerate case. Vc denotes the
critical backscattering strength for K = 1/3.

boundary of the coherent-incoherent transition by tracing the temperature depen-
dence of the ratio τRC/τcoh = R(0)CµT . The above discussion suggests that there
exists a critical backscattering strength Vc, below which τRC/τcoh decays to zero,
while it diverges otherwise. (see Fig. 4.10). From the inset of Fig. 4.9, the critical
value is estimated as 4Vcτc ' 7.

4.6 Summary
In this chapter, we have studied dynamic response of a mesoscopic capacitor in
the presence of strong electron interactions. Unlike the prior theories based on
mean field type approximations, we have employed the bosonization technique to
take into account interactions exactly. By combining perturbation theory, renor-
malization group, and the PIMC simulation, we treat whole parameter range of
dot-lead coupling. Our results show that the relaxation resistance for a dot con-
nected to a Luttinger liquid is universal R = h/(2e2K) as long as interactions are
sufficiently weak. Below K < 1/2, this resistance is governed by the strength
of the dot-lead coupling: at the charge degeneracy point, there is a critical cou-
pling strength, governed by a KT type phase transition, below which the dot acts
as an incoherent reservoir and the low-frequency resistance exceeds the universal
value. In this incoherent regime, the charge relaxation resistance cannot be de-
fined anymore due to the divergence of RC time. These behaviors are expected to
be observed experimentally in the same setup as in Ref. [9], if a sufficiently high
magnetic field ∼ 10 T is applied in order to realize the fractional quantum Hall
effect at ν = 1/3.





Summary

In this thesis, we have investigated theoretically transport phenomena in meso-
scopic systems based on numerical and analytical approaches. Our main goal is
to reveal how the charge relaxation resistance in a mesoscopic capacitor, which is
composed of a quantum dot and a lead, is affected by strong electron interactions.
We have formulated the mesoscopic capacitor using the bosonization technique in
order to treat exactly the interaction effects, which has been so far handled only
approximately based on mean-field type methods in prior studies. The bosonized
model is not only tractable analytically, but it has an expression suitable to nu-
merical simulation based on the path-integral Monte Carlo (PIMC) method. In
addition, the cluster algorithm recently developed by Werner and Troyer in the
context of resistively shunted Josephson junctions [18] is extensible to our nu-
merical approach, which makes it possible to analyze the nonperturbative region.
In order to check the performance of the cluster algorithm, we have applied the
PIMC method to the single impurity problem in a spinful Tomonaga-Luttinger
liquid. The phase diagram we obtained at finite impurity strength has been com-
pared with the results of renormalization group calculations in the weak and strong
impurity limits [32, 33].

To establish the PIMC method in the Coulomb blockade regime, we have in-
vestigate the static properties of a large quantum dot with spinful electrons in
Chap. 3. By measuring the capacitance of dot, we have confirmed that the capac-
itance at the degeneracy point diverges logarithmically with decreasing tempera-
ture for arbitrary tunneling between the dot and the lead. This phenomenon is a
sign of the two-channel Kondo effect and has been predicted by Matveev based on
the analytical calculations in the weak and strong tunneling limits [22, 23]. Our
results are consistent with a prior study with numerical renormalization group by
Lebanon et al. based on a tunneling model [64]. We have also confirmed that
anisotropy between up and down spin channels due to the Zeeman effect blurs the
divergence as analytically predicted by Le Hur [63].

In Chap. 4, which is the main part of this thesis, we have analyzed dynamic re-
sponse of a mesoscopic capacitor using analytical calculations and the PIMC sim-
ulation. We have assumed spinless electrons and taken into account as two types

71
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of interaction; short-range interactions described with the Luttinger parameter K
and long-range interactions leading to the charging energy EC in the quantum dot.
In the weak barrier limit, where the dot and the lead are strongly connected, we
have treated reflection strength V as perturbation up to second order and shown
that the charge relaxation resistance is quantized at h/2Ke2 irrespective of V , the
gate voltage, or the charging energy. We have also shown that the electrochemical
capacitance Cµ can be expressed as a serial combination of two capacitances as
in the self-consistent scattering theory by Büttiker et al [19]. An important dif-
ference is that the capacitance associated to EC displays Coulomb oscillation in
our theory reflecting the exact treatment of electron interactions, while it does not
in the latter. In the strong barrier limit V → ∞, on the other hand, we have per-
formed perturbative renormalization group and shown that, if K < 1/2 and V is
sufficiently large, the charge relaxation time τRC diverges faster than T−1 as T → 0
due to the Kosterlitz-Thouless transition. As a result, one observes Landauer-type
dc resistance dependent on V , instead of the universal charge relaxation resistance.
In the intermediate regime of V , we have applied the PIMC method to the present
problem to confirm the above predictions. For this purpose, we have contrived
a new scheme to measure the charge relaxation resistance in the PIMC method:
Calculates the linear admittance G(iωn) and the electrochemical capacitance Cµ in
the PIMC simulation and substitute them to

R(iωn) =
1

G(iωn)
− 1
ωnCµ

.

Then, the extrapolation iωn → 0 gives the quantized charge relaxation resistance
h/2Ke2 as long as the system lies in the normal phase. In the case of K < 1/2,
we have numerically observed abrupt increase in R(iωn → 0) upon increasing V .
We stress that this behavior can be observed experimentally in fractional quantum
Hall edges if the filling is equal to an inverse odd number and |u| < T .

Outlooks
Finally, we mention some possible extensions of the present work.

• By performing the analytic continuation iωn → ω + iδ numerically with,
e.g., the padé approximation or the maximum extropy method, one can ob-
tain the charge relaxation resistance at finite frequency. It is expected that
ω-dependence of the charge relaxation resistance is characterized by K, re-
flecting the orthogonality catastrophe.

• The Kosterlitz-Thouless (KT) transition discussed in Chap. 4 also occurs
due to a noisy gate voltage. This situation can be realized by connecting the
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gate to a transmission line with a finite impedance. Le Hur has discussed
the KT transition in such a quantum dot system from the viewpoint of the
Bose-Fermi Kondo model [70].

• Charge relaxation resistance in the Kondo regime can be investigated by
extending the spinful model we have treated in Chap. 3 to a mesoscopic
capacitor with finite size. The relation between the Kondo effect and spin-
charge separation has been studied by Glazman et al. [71]





Appendix A

Chiral Luttinger liquid in a
mesoscopic capacitor

In this appendix, we formulate the fractional quantum Hall edge state with filling
g realized along a mesoscopic capacitor in a perpendicular magnetic field. For
simplicity, g = 1/m with an odd number m is assumed, which allows us to describe
the edge state in terms of a chiral Luttinger liquid (CLL) [72, 73, 74]. We consider
an edge state along a mesoscopic capacitor dipicted in Fig. A.1 and begin with the
Euclidean action for the bulk CLL

S 0[φ] =
1

4πg

∫
dxdτ(∂xφ)(i∂τφ + v∂xφ). (A.1)

In our notation, the electron density is given by ρ = ∂xφ/2π, and the field operator
of an electron can be written in terms of the bosonic filed φ in Eq. (4.20) as

Ψ(x) ∝ exp
[−iθ(x) + iφ(x)

]
, (A.2)

where θ(x) is the phase a quasiparticle gains in the range of (−∞, x], i.e., the sum
of kF x and the Peierls phase. On the point contact, we take into account tunneling
of a quasiparticle e∗(= ge) between x = x1 and x = x2 with the tunneling matrix

Figure A.1: A mesoscopic capacitor and a chiral Lut-
tinger liquid running along its edge. Electrons in the
dot region x1 ≤ x ≤ x2 is capacitively coupled to an
oscillating gate voltage Vg(t). A quasiparticle e∗ = ge
tunnels between x1 and x2, where the two edges be-
come closest.
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element Γ0. The action corresponding to this process is given by

S V[φ] = Γ0

∫
dτ[Ψ†(x2, τ)Ψ(x1, τ) + H.c.] (A.3)

= V
∫

dτ cos[θ + {φ(x1, τ) − φ(x2, τ)}], (A.4)

where V is a constant proportional to Γ0 and θ ≡ θ(x2) − θ(x1). Moreover, we add
the terms describing the charging effect and coupling between the gate voltage
and the charges in the region x1 ≤ x ≤ x2;

S C =

∫
dτ

[
1

2C
{Q(τ)}2 + Q(τ)Vg

]
, Q(τ) =

e
2π

[φ(x2, τ) − φ(x1, τ)]. (A.5)

In the rest of this appendix, we derive an effective action from S 0 + S V + S C and
show that it is equivalent to Eq. (4.20).

A.1 Effective action
The total action S 0 + S V + S C is quadratic in φ except for x = x1 and x = x2.
Thus we can derive an effective action by integrating out φ away from x1 and x2 in
the path integral picture as descried bellow. To perform this integration, we first
replace the φ in the argument of S V and S C with local fields φ1 and φ2 as

Z ∝
∫

DφDφ1Dφ2Dλ1Dλ2e−S 0[φ]−S V [φ1,φ2]−S C[φ1,φ2]−S λ
(1)[φ,λ1,λ2]−S λ

(2)[φ1,φ2,λ1,λ2].

(A.6)

Here the auxiliary fields λ1 and λ2 has been introduced to relate φ1 and φ2 indi-
rectly to φ through the additional actions

S λ
(1)[φ, λ1, λ2] = i

∑
j=1,2

∫
dτλ j(τ)φ(x j, τ), (A.7)

S λ
(2)[φ1, φ2, λ1, λ2] = −i

∑
j=1,2

∫
dτλ j(τ)φ j(τ). (A.8)

Now the routine work to do is to perform the Gaussian integrations in φ, λ1 and
λ2, which appear in S 0, S λ

(1) and S λ
(1). So here we focus on these actions for a

while and express them in the Fourier space;

φ(x, τ) =
1

Lβ

∑
k

∑
ωn

φ̃(k, ωn)eikx−iωnτ, (A.9)
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φ j(τ) =
1
β

∑
ωn

φ̃ j(ωn)e−iωnτ, λ j(τ) =
1
β

∑
ωn

λ̃ j(ωn)e−iωnτ, (A.10)

S 0[φ] =
1

4πg

∫
dxdτ

1
L2β2

∑
kq

∑
ωnωm

k(iωm − vq)φ̃(k, ωn)φ̃(q, ωm)ei(k+q)x−i(ωn+ωm)τ

(A.11)

=
1

Lβ

∑
k(,0)

∑
ωn

k(vk − iωn)
4πg

|φ̃(k, ωn)|2 (A.12)

=
1

Lβ

∑
k(,0)

∑
ωn

Akn|φ̃(k, ωn)|2
(
Akn =

k(vk − iωn)
4πg

= A−k,−n

)
, (A.13)

S λ
(1)[φ, λ1, λ2] = i

∑
j

1
Lβ

∑
k

∑
ωn

λ̃ j
∗(ωn)φ̃(k, ωm)eikx j , (A.14)

S λ
(2)[φ1, φ2, λ1, λ2] = −i

∑
j

1
β

∑
ωn

λ̃ j
∗(ωn)φ̃ j(ωm). (A.15)

For simplicity, we write only the part related to each integration in the followings.
First, the Gaussian integral in φ can be calculated as∫

Dφe−S 0[φ]−S λ
(1)[φ,λ1,λ2] (A.16)

=

∫
Dφ exp

− 1
Lβ

∑
k(,0)

∑
ωn

Akn|φ̃(k, ωn)|2 + i
∑

j

λ̃ j
∗(ωn)φ̃(k, ωn)eikx j


 (A.17)

∝ exp

− 1
Lβ

∑
k(,0)

∑
ωn

1
4Akn
|λ̃1(ωn)eikx1 + λ̃2(ωn)eikx2 |2

 (A.18)

= exp

− 1
Lβ

∑
k(,0)

∑
ωn

1
4Akn

[|λ̃1(ωn)|2 + |λ̃2(ωn)|2

+ {λ1(ωn)λ2
∗(ωn) + λ1

∗(ωn)λ2(ωn)} cos kL

−i{λ1(ωn)λ2
∗(ωn) − λ1

∗(ωn)λ2(ωn)} sin kL]
]
, (A.19)

and the summations over k are estimated as
1
L

∑
k(,0)

1
4Akn

=
2πvg

L

∑
k>0

1
v2k2 + ωn

2 (A.20)

=
g
v

∫ ∞

0

dk
k2 + (ωn/v)2 =

πg
2|ωn|

, (A.21)

1
L

∑
k(,0)

cos kL
4Akn

=
2πvg

L

∑
k>0

cos kL
v2k2 + ωn

2 (A.22)
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=
g
v

∫ ∞

0
dk

cos kL
k2 + (ωn/v)2 =

πg
2|ωn|

e−|ωn |L/v, (A.23)

1
L

∑
k(,0)

sin kL
4Akn

=
2πigωn

Lv2

∑
k>0

sin kL
k[k2 + (ωn/v)2]

(A.24)

=
igωn

v2

∫ ∞

0
dk

sin kL
k[k2 + (ωn/v)2]

=
iπg
2ωn

(1 − e−|ωn |L/v). (A.25)

Then, the path integral over φ is summarized as

∴
∫

Dφe−S 0[φ]−S λ
(1)[φ,λ1,λ2] (A.26)

= exp

−1
β

∑
ωn

πg
2|ωn|

{
|λ̃1(ωn)|2 + |λ̃2(ωn)|2

+ {λ1(ωn)λ2
∗(ωn) + λ1

∗(ωn)λ2(ωn)}e−|ωn |L/v

+{λ1(ωn)λ2
∗(ωn) − λ1

∗(ωn)λ2(ωn)}sgn(ωn)(1 − e−|ωn |L/v)
} ]

(A.27)

= exp

−1
β

∑
ωn

πg
2|ωn|

{|λ̃1(ωn)|2 + |λ̃2(ωn)|2 + 2B(ωn)λ̃1(ωn)λ̃2
∗(ωn)}

 , (A.28)

where

B(ωn) = e−|ωn |L/v + sgn(ωn)(1 − e−|ωn |L/v)
[

L→∞−→ sgn(ωn)
]
. (A.29)

Next, the Gaussian integral in λ1 is performed in the same way;∫
Dλ1[Eq (A.28)] exp

 i
β

∑
ωn

φ̃1
∗(ωn)λ̃1(ωn)

 (A.30)

=

∫
Dλ1 exp

−1
β

∑
ωn

πg
2|ωn|

{|λ̃1(ωn)|2 + |λ̃2(ωn)|2}

−1
β

∑
ωn

{
πg
|ωn|

B(ωn)λ̃2
∗(ωn) − iφ̃1

∗(ωn)
}
λ̃1(ωn)

 (A.31)

= exp

−1
β

∑
ωn

πg
2|ωn|

|λ̃2(ωn)|2 +
∑
ωn

|ωn|
2πgβ

{
πg
|ωn|

B(ωn)λ̃2
∗(ωn) − iφ̃1

∗(ωn)
}

×
{
πg
|ωn|

B(−ωn)λ̃2(ωn) − iφ̃1(ωn)
}]

(A.32)

= exp

−1
β

∑
ωn

πg
2|ωn|

{1 − B(ωn)B(−ωn)} |λ̃2(ωn)|2
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− i
β

∑
ωn

B(−ωn)φ̃1
∗(ωn)λ̃2(ωn) −

∑
ωn

|ωn|
2πgβ

|φ̃1(ωn)|2
 . (A.33)

Finally, the Gaussian integral in λ2 leads to the Boltzmann factor in φ1 and φ2∫
Dλ2[Eq. (A.33)] exp

 i
β

∑
ωn

φ̃2
∗(ωn)λ̃2(ωn)

 (A.34)

=

∫
Dλ2 exp

−1
β

∑
ωn

πg
2|ωn|

{1 − B(ωn)B(−ωn)}|λ̃2(ωn)|2

− i
β

∑
ωn

{B(−ωn)φ̃1
∗(ωn) − φ̃2

∗(ωn)}λ̃2(ωn)

− 1
2πgβ

∑
ωn

|ωn||φ̃1(ωn)|2
 (A.35)

= exp

−∑
ωn

|ωn|
2πgβ

1
1 − B(ωn)B(−ωn)

×
{
B(−ωn)φ̃1

∗(ωn) − φ̃2
∗(ωn)

} {
B(ωn)φ̃1(ωn) − φ̃2(ωn)

}
− 1

2πgβ

∑
ωn

|ωn||φ̃1(ωn)|2
 (A.36)

= exp

− 1
2πgβ

∑
ωn

|ωn|
1 − B(ωn)B(−ωn)

{|φ̃1(ωn)|2

−2B(−ωn)φ̃1
∗(ωn)φ̃2(ωn) + |φ̃2(ωn)|2}

]
(A.37)

Recall the fact that the tunneling term S V and the charging term S C couple only
to the asymmetric combination of the local fields, i.e., φ1 − φ2, which means the
symmetric combination φ1+φ2 can be also integrated out. To see this, we redefine
new bosonic fields and perform the last Gaussian integral in the symmetric field;

φ1 = φs + φa, φ2 = φs − φa, 2φa = φ1 − φ2, 2φs = φ1 + φ2, (A.38)

|φ̃2(ωn)|2 + |φ̃2(ωn)|2 = 2[|φ̃s(ωn)|2 + |φ̃a(ωn)|2], (A.39)
φ̃1(ωn)φ̃2

∗(ωn) = [φ̃s(ωn) + φ̃a(ωn)][φ̃s
∗(ωn) − φ̃a

∗(ωn)] (A.40)

= |φ̃s(ωn)|2 + φ̃s
∗(ωn)φ̃a(ωn) − φ̃s(ωn)φ̃a

∗(ωn) − |φ̃a(ωn)|2, (A.41)
φ̃1
∗(ωn)φ̃2(ωn) = [φ̃s

∗(ωn) + φ̃a
∗(ωn)][φ̃s(ωn) − φ̃a(ωn)] (A.42)

= |φ̃s(ωn)|2 − φ̃s
∗(ωn)φ̃a(ωn) + φ̃s(ωn)φ̃a

∗(ωn) − |φ̃a(ωn)|2, (A.43)

Z =
∫

DφsDφa exp

− 1
2πgβ

∑
ωn

|ωn|
1 − B(ωn)B(−ωn)

(A.44)
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× [{2 − B(ωn) − B(−ωn)}|φ̃s(ωn)|2 + {2 + B(ωn) + B(−ωn)}|φ̃a(ωn)|2 (A.45)

+ 2{B(ωn) − B(−ωn)}φ̃a
∗(ωn)φ̃s(ωn)]

]
e−S V [φa]−S C[φa] (A.46)

=

∫
Dφa exp

− 1
2πgβ

∑
ωn

2 + B(ωn) + B(−ωn)
1 − B(ωn)B(−ωn)

|ωn||φ̃a(ωn)|2 (A.47)

− 1
2πgβ

∑
ωn

{B(ωn) − B(−ωn)}2|ωn||φ̃a(ωn)|2
{2 − B(ωn) − B(−ωn)}{1 − B(ωn)B(−ωn)}

 e−S V [φa]−S C[φa]

(A.48)

=

∫
Dφa exp

− 1
πgβ

∑
ωn

2
2 − B(ωn)B(−ωn)

|ωn||φ̃a(ωn)|2
 e−S V [φa]−S C[φa]

(A.49)

=

∫
Dφa exp

− 1
πgβ

∑
ωn

|ωn|
1 − e−|ωn |L/v

|φ̃a(ωn)|2
 e−S V [φa]−S C[φa]. (A.50)

Then we arrive at the effective action in terms of φa

S eff =
1
πgβ

∑
ωn

|ωn|
1 − e−|ωn |L/v

|φ̃a(ωn)|2 + V
∫

dτ cos[θ + 2φa(τ)]

+

∫
dτ

[
1
π2

e2

2C
{φa(τ)}2 −

eVg

π
φa(τ)

]
, (A.51)

which is clearly equivalent to the effective action in the non-chiral case [see Eq. (4.20)].
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