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Abstract
In this thesis, we study quantum nature of mobile quantum objects

through the setup of the Hong-Ou-Mandel-type experiment, which re-
flects statistical properties of the objects. We first study effect of envi-
ronmental noise in solid state devices for single-photon generation. We
derive density matrix of emitted photons in a fully analytic form, and
calculate survival probabilities, spectra, and purities of emitted photons
under pure dephasing induced by energy level fluctuation. We discuss
what extent quality of quantum coherence of emitted photons is affected
by noise, and how it is improved by time filtering. We also study ef-
fect of environmental noise and Coulomb interaction on single-electron
generation using a chiral edge state in integer quantum Hall effect. We
discuss how noise and the Fermi-edge singularity of edge states affect
quantum coherence of emitted electrons. These results will provide a
useful aspect on future application on quantum information technology
using mobile quantum objects. Finally, we calculate finite-temperature
noise due to fractional charge excitations in order to access fractional sta-
tistical properties of quasiparticles. We propose an extended shot noise
calculated from experimentally available data, and demonstrate that it
is useful to determine the statistical angle of quasiparticles.

This is a version, which is uploaded on the Web. Figures taken from
previous studies are omitted.
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Chapter 1

Introduction

In this chapter, we overview the background of the present research,
and present the purpose of this thesis. A detailed review of previous
experimental and theoretical studies related to this thesis is given in
Chap. 2.

1.1 Overview

Coherent control of quantum states in physical systems is now of much
importance in various research fields. Quantum manipulation of quan-
tum states not only provides appealing demonstration on the foundation
of quantum mechanics such as examination of breaking of Bell’s inequal-
ity, but also gives a vital building block of quantum information tech-
nology (quantum communication, quantum computation, etc.) [1]. In a
number of early studies, quantum manipulation was tried to spatially-
fixed objects such as ions trapped by laser, cavity-QED systems, Joseph-
son devices, quantum dots, and so on. Recently, mobile quantum objects
have been attracting much interest, because they are expected to play an
important role in quantum information transfer between spatially-fixed
quantum objects. Mobile quantum objects are also useful in experimen-
tal demonstration of ‘non-locality’ in quantum mechanics as nonlocal
correlation between spatially-separate quantum objects is easily gener-
ated.

7
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Realization of mobile quantum objects has been considered so far
in two kinds of particles, bosons and fermions. Let us first discuss the
first type of particles, i.e., bosons. The most famous object of this kind
is a photon. Quantum nature of photons has been of a central topic
for a few decades in the research field called ‘quantum optics’ [2, 3].
Technology of quantum optics is being developed even now, and has
enable us to manipulate a quantum state of a single photon, to entangle
a few photons, and to utilize photons for quantum communication. In
spite of these successes, there are a disadvantage in use of photons as
mobile quantum objects; interaction between photons is usually weak.
To increase interaction between photons, one may consider use of excel-
lent nonlinear optical materials. Another promising way is to employ a
combined system of a single atom and a cavity, which is called a cavity
quantum electrodynamics (cavity QED) system [4, 5]. This system can
naturally introduce strong interaction between photons through nonlin-
earity of the system prohibiting an atom to be excited twice. Further
recent progress in quantum optics enables us to fabricate a novel type of
the cavity QED system composed by an optical cavity and a quantum
dot, both of which is made in semiconductors [6]. The semiconductor
cavity QED has an advantage that an atomic system (a quantum dot) is
spatially fixed and can couple cavity photons continuously, in contrast
with the original cavity QED system where atoms stay in a cavity with
a finite dwell time. The semiconductor cavity QED is now considered
to be a promising candidate for quantum information processing with
photons in solid state devices. The cavity QED system in solid state
devices provides a novel feature originating from strong influence of the
environment. The atomic level is no longer isolated, and couples to the
background fluctuation. This environment effect induces new effects as
discussed in Sec. 2.1.

The second type of mobile quantum objects are fermions. The most
famous object following fermi statistics is, of course, an electron. In
contrast with photons, quantum control of mobile electrons started only
several years ago. For generation of nonlocal quantum correlation, one-
dimensional electron systems have frequently been considered theoreti-
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cally. A chiral edge state in the integer quantum Hall (IQH) states [7] is a
good candidate for a quantum propagation of electrons, since backward
scattering by impurities and potential inhomogeneity is well suppressed.
Actually in 2007, a single-electron injection from a quantum dot into an
edge state has been realized experimentally by using a rapid temporal
change of a gate voltage [79]. This result reminds us of a fermionic anal-
ogy of experiments in quantum optics if an edge state and a tunneling
junction of edge states are considered to be a light-propagating channel
and a half-mirror. This experiment opens up a possibility of a novel
quantum device using mobile quantum objects. For actual application,
we should note that electrons in chiral-edge channels system may suf-
fer strong perturbation from an (electronic) environment because of the
Coulomb interaction. The coupling between electrons and an environ-
ment induces pure dephasing, and affects quality of quantum informa-
tion carried by propagating electrons in edge channels. (Detailed review
is given in Sec. 2.2.)

The most remarkable difference between photons and electrons is the
change of the wave function in exchanging indistinguishable particles;
the sign of the wave function is invariant in exchanging bosons (like
photons), whereas it is changed in exchanging fermions (like electrons).
This difference is strikingly observed in the so-called Hong-Ou-Mandel
experiment [9]), which is a variant of the Hanbury Brown-Twiss ex-
periment [10, 11, 12, 13, 14, 15]. We show a schematic setup of the
Hong-Ou-Mandel experiment in Fig. 1.1 (a), where two input particles
simultaneously enter a half mirror M from a channel 1 and 2, and scatter
out into a channel 3 or 4. If the particles are bosons, both of two particles
always scatter out into the same channel, i.e., both go into the channel 3
with a probability 1/2 and into the channel 4 with a probability 1/2. On
the other hand, if the particles are fermions, each of them always scatters
out respectively into the different channels, i.e., one of two goes into the
channel 3 and the other into the channel 4. In other words, the coinci-
dence probability P34 that one of two particles goes out into the channel
3 and the other into the channel 4 is 0 for bosons, and 1 for fermions.
The fermionic analogy of the Hong-Ou-Mandel experiment is actually
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Figure 1.1: Schematic illustrations of systems treated in this thesis. (a)
Hong-Ou-Mandel interference experiment (b) two chiral edge channels
in IQH, coupled to each other at a junction M (c) two chiral edge channels
in FQH. quasi-particle with charge e∗ tunnels at a junction M

realized in the IQH edge states as shown in Fig. 1.1 (b). Here, two chiral
edge channels are coupled to each other at a junction M. We assume that
when one electron in channel 1 enters the junction M, it go through the
junction into the channel 3 with a probability T, and tunnels(reflects)
into the channel 4 with a probability R. Similarly, we assume that if one
electron in channel 2 enters the junction M, it go through the junction
into the channel 4 with a probability T, or tunnels into the channel 3 with
a probability R. For the half-mirror condition T = R = 1/2, the system
shown in Fig. 1.1 (b) provides an analogy of the fermionic Hong-Ou-
Mandel experiment. Although several experimental groups have now
been trying to realize this type of experiments by using a single-electron
generator in semiconductors, its experimental demonstration has not
been reported so far.
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In this thesis, we point out that the Hong-Ou-Mandel experiment can
be utilized for evaluation of quality of quantum information carried by
mobile quantum objects. Actually, as shown in Sec. ??, the coincidence
probability P34 is related to the purity of one incident particle state as
P34 = 1 ∓ P where −(+) is for bosons(fermions). Here, the purity P =
Trρ2 is a measure of how the wave function of the incident particle
retains quantum coherence, and takes 1 and 0 for a pure state and a fully
mixed state, respectively. Thus, the coincide probability in the Hong-
Ou-Mandel experiment gives a direct measure of quantum coherence
of a single particle. One of the main subjects in this thesis is to study
how dephasing process in a single particle generator made in solid state
devices affects coherence of quantum mobile objects by evaluating the
coincide probability in the Hong-Ou-Mandel experiment setup.

In condensed matter physics, it is known that there exists the third
type of mobile quantum objects called an anyon. Anyons are described
as elementally quasi-particle excitations in the fractional quantum Hall
(FQH) effect [16, 17]. Although precise theoretical description on statis-
tics in exchanging two anyons is difficult in general, simple argument
is possible for some special cases. We show one example in Fig. 1.1 (c),
where the setup is almost the same as Fig. 1.1 (b) except for replacing the
region between two edge channels from the IQH state to the FQH state.
When we take the reflection probability R as small (R = 1 − T ≪ 1), the
fundamental charge-transfer process at the junction is dominated by one
quasi-particle excitation in FQH states with a fractional charge e∗ The
fractional charge e∗ is equal to νe in Laughlin state, where ν is a filling
factor. Then, the effective charge e∗ can be observed by measurement of
shot noise, i.e., partition noise at the junction [18, 19, 20, 21]. Statistics
of anyons, however, is not characterized by an effective charge e∗, but
by a statistical angle θ defined by the extended commutation relation
cic†j − eiθc†j ci = δi j. Whereas the statistical angle of anyons in FQH states
is given simply by θ = νπ for the Laughlin states ν = 1/(2n + 1), it
takes more complex values in general hierarchical FQH states, and is
in general independent of the effective charges e∗. The statistical angle
has been studied experimentally by the Aharonov-Bohm oscillation in
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a ring fabricated by FQH edge states [22]. However, direct observa-
tion of anyons statistics in two-particle exchange process such as the
Hong-Ou-Mandel-type experiment still remains a challenge.

1.2 Purpose of this thesis

In this thesis, we theoretically study the following three subjects, all of
which are closely related to statistics of mobile quantum objects.

1.2.1 Single photon generator (Chap. 3)

We study a quantum nature of a single photon generated from a cavity
QED system in semiconductors [23]. We consider dephasing effect due
to white-noise energy-level fluctuation in a quantum dot by introducing
an additional one-dimensional bosonic port. We show that all the quan-
tities of interest on a generated photon can be calculated analytically in
this simplified model. We show that novel features on quantum coher-
ence of a generated photon in solid state devices are obtained through
calculation of a survival probability, a spectrum, and a purity despite
simpleness of the model.

1.2.2 Single electron generator (Chap. 4)

We study a quantum nature of a single electron generated from a quan-
tum dot into an IQH edge channel. As source of dephasing on electrons,
we consider (1) white-noise energy level fluctuation in a quantum dot
and (2) (screened) Coulomb interaction between an electron in a dot
and electrons in a edge channel. We calculate a survival probability,
a spectrum, and a purity in this system. In particular, we show that
Coulomb interaction induces the so-called ‘fermi-edge singularity’ ef-
fect, and strongly affects coherence of a generated electron.
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1.2.3 Shot noise in FQH edge states (Chap. 5)

We study current noise at finite temperatures under weak reflection be-
tween two FQH edge states [24]. We define an (extended) Fano factor at
finite temperatures, which can be obtained from measurement of noise
power and nonlinear differential conductance. We show that this ex-
tended Fano factor is useful to experimentally detect a statistical angle.
We demonstrate that the extended Fano factors show different behaviors
for ν = 1/5 and ν = 2/5 even though the fractional charge is given by
e∗/5 for both FQH states.



Chapter 2

Review

In this chapter, we present a detailed review on single-particle genera-
tion. We describe previous experimental and theoretical works on indi-
vidual topics, single-photon generation (Sec. 2.1), single-electron gener-
ation (Sec. 2.2), fractional charge excitation and shot noise in FQH edge
states (Sec. 2.3).

2.1 Single Photon Generation

2.1.1 Cavity QED systems

As mentioned in Chap. 1, a key factor in future development of quantum
optics is control of strong nonlinear coupling between photons. One
hopeful candidate is a cavity QED system [4]. Fig. 2.1 shows a schematic
figure of a typical cavity QED setup. Two mirrors located in an extreme
high vacuum constitute a high-Q cavity for a photon frequency ωc. One
of two mirrors has weak photon leakage, whose rate is denoted with κ,
into an output light channel connected to a photon counter. One atom
flows slowly through the cavity, and stays in the cavity in a finite dwell
time. Atoms in the cavity can interact with the photon field through
a dipole interaction. For simplicity, an atom is assumed to have only
two quantum levels with an energy difference ωa, and its coupling to
the cavity fields to be a constant g independent of the photon frequency

14



2.1. SINGLE PHOTON GENERATION 15
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Figure 2.1: Characteristic setup of the cavity QED system, composed of
an atom, a cavity, and an environment (an output channel).

ω around the cavity frequency ωc. Then, the system Hamiltonian is
described within the rotating wave approximation as

H0 = ωaσ
†σ + ωca†a + g(σ†a + a†σ), (2.1)

where a(a†) is an annihilation(a creation) operator of the cavity photon
field, and σ is a transition operator of the atom. This model is known as
the Jaynes-Cummings model [25, 26]. There are several methods to add
leakage effect into an output channel. The simplest method to describe
it in a fully quantum mechanical way is to introduce a one-dimensional
bosonic port [27, 28, 29, 30], whose Hamiltonian is given as

Hleak =

∫
kb†kbkdk +

√
κ

2π

∫
dk(b†ka + a†bk). (2.2)

The cavity QED system has an important feature useful for quantum
manipulation of photons. Let us first consider the Jaynes-Cummings
Hamiltonian H0 for the nearly tuned case (ωa ∼ ωc) in the space spanned
by two state bases; one is a state of an excited atom plus no cavity photon,
and the other is of a ground-state atom plus one cavity photon. These two
states are mixed by the atom-cavity coupling g, and the eigenenergy of H0

is given as E = ω̄±
√

(δω)2 + g2, where ω̄ = (ωa+ωc)/2 and δω = (ωc−ωa).
For the perfectly tuned case (δω = 0), the energy splitting is 2g, which is
called the vacuum Rabi coupling. By a similar way, the energy splitting
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Figure 2.2: Three types of optical cavities in semicondoctors. (a) A
photonic-crystal-slab nanocavity, (b) a micropillar, and (c) a microdisk.
(Cited from [6].)

between high-energy states, a N-photon plus excited-atom state and a
N + 1-photon plus ground-state-atom state is calculated as 2g

√
N + 1.

Clearly, the photon fields yields nonlinearity with respect to the cavity
photon intensity N by the presence of atoms. This nonlinearity of photon
fields is useful for nonlinear optics such as laser physics [6]. Even in
linear optics, the cavity QED system is useful in quantum manipulation
of photons and atomic states. For actual use of the cavity QED, it is
required to increase the vacuum Rabi coupling g. Although the coupling
g was usually smaller than κ in early studies of the cavity QED, it has
been increased in recent experiments close to (or in some case larger
than) κ. We call the former condition g < κ as weak coupling and the
latter g > κ as strong coupling. In the strong coupling condition g > κ,
an appropriately prepared initial state can oscillate in the Hilbert space
spanned by two states (N photon plus excited atom and N + 1 photon
plus ground-state atom) with a frequency 2g

√
N + 1. This is called the

vacuum Rabi oscillation.

For single photon generation, we may naively expect that large cou-
pling strength g is favorable since rapid emission of photons into the
cavity can be realized. The best condition for single photon generation
is, however, nontrivial. One reason is that for large values of g pho-
ton emission into an output channel is bottlenecked by leakage rate κ.
Another reason is that environment effect such as unintended emission
into vacuum. For example, single photon generation by using π-pulse
excitation of an atom has been studied theoretically [31, 32].
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2.1.2 Cavity QED systems in solid state devices

Rapid development of nanoscale fabrication technique has now enabled
to realize a cavity QED system in solid state devices. Weak Rabi-vacuum
coupling between a semiconductor quantum dot and a cavity photon
field as well as its application to single photon generation has already
been realized a decade ago [33, 34, 35, 36, 37]. Realization and control
of strong Rabi-vacuum coupling are now one of hot topics in quantum
optics in semiconductors [6], since they are useful for creating compact
optical devices. There are several ways for fabrication of cavities to re-
alize a large vacuum Rabi splitting. In Fig. 2.2, we summarized three
types of optical cavities, a photonic-crystal-slab nanocavity [38], a mi-
cropiller [39], and a microdisk [40]. Though there are advantages and
disadvantages for each of these types of cavities, the cavity frequency,
the leakage frequency, and Rabi vacuum coupling in these systems are
roughly given as ωc ≃ 3− 5× 105GHz, κ ≃ 40GHz, and g ≃ 40− 200GHz,
respectively [39, 38, 40]. This strong-coupling cavity-dot system has been
utilized to fabricate a single-dot laser [41] and to generate nonclassical
light [42, 43].

Another important physical system for realization in cavity QED in
solid state devices is a superconductoring device [44]. After the first
experimental realization [45], there have appeared a number of remark-
able experimental results including generation of single microwave pho-
tons [46], generation of Fock states [47], and tomography of arbitrary
states between a qubit and a cavity field [48]. We, however, will not dis-
cuss experimental relevance of this thesis to the superconducting cavity
QED, because environment noise in this system is governed by low fre-
quency 1/ f noise [49], which is difficult to be treated in the method
adopted in this thesis based on white noise. Although we should keep
in mind importance of dephasing problem in the superconducting cavity
QED, we will left it as a future problem here.
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Figure 2.3: (a) A photoluminescence spectra of a photonic-crystal-slab
cavity coupled to a quantum dot. Each curve is obtained by changing
Xe pressure, which condensate on a semiconductor surface. (b) Change
of peak positions. (Cited from [50].)

2.1.3 Dephasing effect in cavity QED systems

Single photon generator made by the cavity QED system in solid state de-
vices has several advantages on scalability and easiness of experiments
with no need of an extreme vacuum as in the original cavity QED sys-
tem. There, however, are a disadvantage that the system suffers strong
environment noise. Environment noise is considered to strongly affect
the fluorescence spectra of solid-state, and make its behavior qualita-
tively different from the atomic cavity QED. In Fig. 2.3, we show an
example of a spectrum of an emitted photon from the cavity in apply-
ing a pump light whose frequency is tuned to excite a ground state of
a quantum dot to an target excited state [50]. In usual experiments,
the transition energy of a quantum dot is almost constant, whereas the
cavity energy can be varied by changing the temperature, the intensity
of pump light, and other experimental conditions. In the experiment
shown in Fig. 2.3, quantity of condensate Xe on the surface is controlled
to change the cavity energy. The peak changing its position depending
on the Xe concentration corresponds to the cavity energy, and the other
small invariant peaks correspond to the transition energies of a single
quantum dot. One can clearly see a Rabi vacuum splitting when two
peaks marge. Then, there is one mystery of this data; the cavity peak is
not expected to appear if the detuning energy (the difference of the cavity
and transition energy) is much larger than the linewidth of two peaks.
The same feature has been observed in other experiments [39, 38, 40].
This feature is inherent in the cavity QED in solid state devices, and is
not observed in the atomic cavity QED. Further experimental studies
have characterized this peak more throughly [51, 52, 53, 54, 55, 56, 57]
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and now the appearance of fluorescence at the cavity frequency in the
off-resonant condition is considered to be explained by dephasing effect
due to the environment noise, which is unavoidable more or less in solid
state devices.

In parallel to experimental studies, there have appeared several the-
oretical studies to account for the above experimental results on the
photoluminescence spectra. Simple analyses based on the stochastic
Schrödinger equation [58, 59] or the Master equation [60, 61, 62] has
successfully explained appearance of the peak at the cavity frequency
for the detuned case. These analyses implicitly assume white-noise type
fluctuation as the environment noise, and are insufficient to explain de-
tails of experiments such as temperature dependences. More realistic
model of the environment noise based on phonons [63, 64, 65, 66, 67]
and charge fluctuation of background carriers [68] has also been stud-
ied. Whereas the understanding of photoluminescence spectra has thus
been proceeding, dephasing effect on the indistinguishability of photons,
which is crucial to the Hong-Ou-Mandel experiment on emitted photons
from two single-photon generators, has not studied so far.

2.2 Single Electron Generation

2.2.1 Analogy between optics and electronics

In a long history of mesoscopic physics, which is a research area to
study quantum nature of electrons in solids, analogy with optics has
played an important role. For example, the term Fabry-Perot interfer-
ometer, which is realized in quantum wires with scatterers, was clearly
imported from optics. In a level of one-particle interference experiments
such as Young’s interference experiments [69] (or the Aharonov-Bohm
interference experiments [70]), there appears no difference between pho-
tons and electrons. On the other hand, important information of statistics
of quantum particles is obtained from two-particle correlation. There-
fore, the analogy with quantum optics has been utilized actively in study
of shot noise in mesoscopic conductors [71, 72]. Two-particle correlation
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Figure 2.4: Schematic of single-electron(hole) injection into an edge state.
(a) Temporal change of a gate voltage applied to a quantum dot, (b) a
schematic viewgraph of the experimental setup, and (c) energy diagram
of electron(hole) injection. (Cited from Ref. [79]).

Figure 2.5: Experimental results of single electron generation. Temporal
change of the gate voltage (the red lines), the averaged current (the black
lines), and the fitted curve with exponential functions (the blue lines).
(Cited from Ref. [79]).

has been measured in various types of experiments in mesoscopic sys-
tems such as shot noise reduction in point contacts [73], fermionic Han-
bury Brown-Twiss experiments [74, 75], and two-particle Mach-Zender
interferometer utilizing shot noise measurement [76, 77]. Now, there
are a number of experimental supports on fermion statistics of electrons
through quantum-optics-like experiments. We note that nonlocal quan-
tum correlation breaking the Bell’s inequality can be produced even from
thermal source of electrons in, e.g., two-channel edge states [78].

Two-particle correlation measurement explained so far is for nonequi-
librium steady state. Recently, there was one breakthrough in experi-
ments on mesoscopic systems in temporal domain. In 2007, French ex-
perimental group has realized single electron sources by using a quan-
tum dot and a time-controlled gate in order of sub-nanosecond [79].
Fig. 2.4 shows schematic of their experiment. They have applied the
time-dependent gate voltage shown in Fig. 2.4 (a) to a quantum dot
coupled to a chiral edge channel through a point contact (Fig. 2.4 (b)).
Then, one electron and one hole are injected into a chiral edge channel
in this period (Fig. 2.4 (c)) with appropriate tuning of the voltage-pulse
amplitude. The average current induced in this temporal change of the
gate voltage is shown in Fig. 2.5. At a rapid change of the gate-voltage
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(shown by the red lines), average additional currents are induced. The
current shows exponential decay with finite decay rates, which are given
as τ = 0.9ns, 3.6ns, and 10ns in the three graphs given in Fig. 2.5. The
decay rates agree with theoretical values derived from the transmission
probability D at a point contact, which has been estimated from the lin-
ear ac response. Moreover, the integral of the averaged current for a half
of the period is shown to coincide with a charge e when the decay rate is
sufficiently large.

Realization of dynamical control of electron(hole) injection opens up
a novel type of experiments. The most important experiment in this
category is the Hong-Ou-Mandel experiment explained in Chap. 1 (see
Fig. 1.1), though it has not succeeded so far. With expectation of this
novel type of quantum-optical experiments, several theoretical proposals
such as two-particle collider shot noise [80] and nonlocal Aharonov-
Bohm effect [81] have been presented. This experiment also provides
a possibility of application to quantum information processing using
moving electrons in edge channels.

After the experiment of Ref. [79], theoretical calculation based on
noninteracting electron models [85, 87] and Master equations [86] has
been performed to explain detailed feature of experiments of single-
electron generation [88, 83, 84]. Although dephasing effect on injected
single electrons has also been studied by several authors [88, 89], it is
based on a phenomenological model using an additional bosonic port
(see Sec. 2.1.1). In our knowledge, there is no theoretical trial so far to
deal with Coulomb interaction effect, which is expected to be strong in
single-electron injection process. We will study dephasing effect due to
environment noise and Coulomb interaction in Chap. 4.

2.3 Fractional quantum Hall systems

Incompressive two-dimensional fluid in FQH effect has provided a num-
ber of interesting phenomena after its discovery [16]. This state emerges
by drastic effect of Coulomb interaction between electrons in clean sam-
ples of two-dimensional electron gases under strong perpendicular mag-
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Figure 2.6: Longitudinal and transverse resistivity of two-dimensional
electron gases showing various hierarchical states of the FQH effect.
(Cited from Ref. [94]).

Figure 2.7: Shot noise measurement for the ν = 1/3 Laughlin state. (Cited
from Ref. [19]).

netic field, and is described by Laughlin’s wave functions [17] for a sim-
ple filling factor ν = 1/(1 + 2n). The hierarchical states of FQH has been
considered in the picture of composite particles composed of electrons
and some amount of flux, and have succeeded in explaining of experi-
mental observation. We show an example of experimental observation
on hierarchical structures of FQH states. We show an example of such
hierarchical structures in FQH in Fig. 2.6.

One of the most remarkable properties in FQH states is existence of
quasi-particle excitations with a fractional charge e∗. Direct measurement
of fractional charge is possible in measurement of shot noise. We show
one example of shot noise measurement for determination of fractional
charge e∗ at the ν = 1/3 Laughlin state [19] in Fig. 2.7. Comparison with
the theoretical prediction of shot noise power indicates that the fractional
charge for the ν = 1/3 Laughlin state seems to be not e but close to e/3.

The quasi-particle with fractional charges obeys fractional statis-
tics [123], characterized by a statistical angle θ upon an adiabatic ex-

Figure 2.8: (a) Setup of the Aharonov Bohm for quasiparticles with frac-
tional charges. (Cited from Ref. [22]). (b) Experimental setup for mea-
surement of current cross-correlation to detect statistical angles. (Cited
from Ref. [95]).
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change process of two quasi-particles,

Ψ(r1, r2) = eiθΨ(r2, r1). (2.3)

The issue to experimentally observe θ has also become an intriguing
question. It has been proposed to use a kind of the Aharanov-Bohm (AB)
effect in equilibrium [96, 97, 98, 99, 100] (Fig. 2.8 (a)), and has performed
successfully in recent experiments [22, 101]. In order to further detect
two-particle correlation between two fractional-charge excitations, a pro-
posal to use cross-correlation of currents has been presented [95], though
it has not been performed experimentally so far.

In Chap. 5, we study finite-temperature noise in FQH edge states. We
propose another method to detect a statistical angle in experiments, by
extending definition of shot noise into the finite-temperature regime.



Chapter 3

Single-Photon Generator

3.1 Introduction

As reviewed in the previous chapter, solid-state cavity QED systems
composed of semiconductor quantum dots and cavities have recently
been attracting much attention [6]. Strong coupling between a single
dot and a cavity has been confirmed through a large vacuum Rabi split-
ting [39, 38, 40], and excellent performances have been reported in gener-
ating indistinguishable photons [90, 91] and entangled photon pairs [92],
both of which are useful for quantum information processing [93].

In contrast with real atoms, semiconductor quantum dots are strongly
influenced by environmental noise sources. The fluorescence spectra of
solid-state and atomic cavity QED are qualitatively different. When
a solid-state system is excited by a pump light of the dot frequency,
a spectral peak appears at the cavity frequency in spite of the large
detuning between them [39, 38, 40]. Further experimental studies have
characterized this peak more throughly [51, 52, 53, 54, 55, 56, 57] and have
revealed that the fluorescence at the cavity frequency is due to radiative
decay of the dot. Subsequent theoretical studies accounted for pure
dephasing of the dot through the stochastic Schrödinger equation [58, 59]
or the Master equation [60, 61, 62] and successfully explained the peak
at the cavity frequency. The influence of pure dephasing on radiative
decay of the dot has also been understood in terms of the quantum Zeno

24
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and anti-Zeno effects [102, 60].

Therefore, when designing a single-photon source using solid-state
cavity QED systems, it is crucial to quantitatively consider pure de-
phasing of the dot. The performance of such photon sources should be
evaluated from two aspects. One is the collection efficiency; namely, the
probability that the emitted photon is transferred to the intended spatial
mode (i.e., the radiation pattern of the cavity). This has been discussed
in several studies in terms of the ratio of radiative decay rates [58, 61, 62].
The other one is the indistinguishability of generated photons, which can
be measured by two-photon interference experiments and is evaluated
by the purity. Single photons with high purity are required for quantum
information processing, particularly for constructing scalable quantum
circuits.

In this chapter, we investigate the properties of a single photon emit-
ted by a solid-state cavity QED system and quantitatively observe the
effects of pure dephasing. We treat the five elements of the overall system
(the dot, the cavity, radiation leaking from the cavity, non-cavity radia-
tion modes, and the environment causing pure dephasing of the dot) as
active quantum-mechanical degrees of freedom, and analytically derive
the density matrix of the emitted photon in the real-space representation.
This density matrix contains full information about the emitted photon,
including its pulse profile, the frequency spectrum, and the purity. These
quantities are observed as functions of the pure dephasing rate of the
dot. We reveal the optimum condition for maximizing the purity of the
emitted photon.

This chapter is organized as follows. In Sec.3.2, we introduce our
model. In Sec.3.3, we analytically derive the state vector and the density
matrix of the emitted photon in the real-space representation. This den-
sity matrix contains full information about the emitted photon, including
its pulse profile, the frequency spectrum, and the purity. In Sec.3.4, we
visualize analytical results for specific parameters. We reveal the opti-
mum condition for maximizing the purity of the emitted photon. Finally
in Sec.3.5 we summarize this chapter.
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Figure 3.1: Schematic illustration of the solid-state cavity QED system
considered. It consists of a quantum dot, a cavity, photon leakage from
the cavity (b field), non-cavity radiation modes (c field), and a reservoir
field, which causes pure dephasing of the dot (d field).

3.2 Model

We investigate radiative decay of an excited quantum dot placed inside
a cavity, as illustrated in Fig. 3.1. This solid-state cavity QED system
consists of the following five components: (i) a quantum dot, (ii) a cav-
ity, (iii) a photon field leaking from the cavity (referred to as the b field
hereafter), (iv) non-cavity radiation modes (c field), and (v) a reservoir
field, which causes pure dephasing of the dot (d field) [104]. The anni-
hilation operators corresponding to these components are respectively
denoted by σ, a, bk, ck, and dk, where k is a one-dimensional wavenumber.
Note that σ is a Pauli operator, whereas the other operators are bosonic.
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Putting ℏ = c = 1, the Hamiltonian of the overall system is given by

H = H0 +H1 +H2 +H3, (3.1)

H0 = ωdσ
†σ + ωca†a + g(σ†a + a†σ), (3.2)

H1 =

∫
dk
[
kb†kbk +

√
κ/(2π)(a†bk + b†ka)

]
, (3.3)

H2 =

∫
dk
[
kc†kck +

√
γ/(2π)(σ†ck + c†kσ)

]
, (3.4)

H3 =

∫
dk
[
kd†kdk +

√
γp/πσ

†σ(d†k + dk)
]
. (3.5)

The parameters are defined as follows (see Fig. 3.1). ωd and ωc respec-
tively denote the resonance frequencies of the dot and the cavity, g repre-
sents the coupling between them, κ is the escape rate of cavity photons, γ
is the radiative decay rate of the dot into non-cavity modes, and γp is the
pure dephasing rate of the dot. H0 describes the Rabi oscillation between
the dot and the cavity (Jaynes–Cummings Hamiltonian), H1 describes
leakage of a cavity photon to its radiation pattern,H2 describes the radia-
tive decay of the dot into unintended directions, andH3 describes pure
dephasing of the dot. We can confirm thatN ≡ σ†σ+a†a+

∫
drb̃†r b̃r+

∫
drc̃†r c̃r

commutes with the Hamiltonian. Therefore, the number of excitations
is conserved in the dot, cavity, b and c fields.

We assume that the dot is initially (t = 0) in the excited state while
the other fields are in their vacuum states. Then, denoting the overall
vacuum state by |0⟩, the initial state vector is given by

|ψi⟩ = σ†|0⟩. (3.6)

The Hamiltonian of Eq. (3.1) and the initial state vector of Eq. (3.6) form
the basis of our analysis.

For later convenience, we introduce the real-space representation of
the b field (cavity leakage). It is defined by

b̃r = (2π)−1/2
∫

dkeikrbk. (3.7)

The r < 0 (r > 0) region represents the incoming (outgoing) field. c̃r and
d̃r can be formally defined in a similar manner. Our main concern lies in
the properties of single photon emitted in the b field.
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To model the pure dephasing of the dot, the d field interacts with the
dot so as to conserve the dot excitation. Using Eqs. (3.2) and (3.5), the dot
Hamiltonian can be rewritten as [ωd+ f (t)]σ†σ, where f (t) =

√
2γp[d̃0(t)+

d̃†0(t)] is the fluctuation of the dot resonance frequency induced by the
d field. Using Eqs. (3.6) and (3.10), we can confirm that ⟨ f (t) f (t′)⟩i =
2γpδ(t − t′), where ⟨· · ·⟩i = ⟨ψi| · · · |ψi⟩. Therefore, the present model
assumes a white noise spectrum for fluctuation of the dot resonance.

3.3 Analysis

In this section, we present analytical results that are rigorously derivable
from the model of Sec. 3.2. We solve the time evolution of the overall
system and derive several formulae to characterize the emitted single
photon (density matrix, pulse shape, spectrum, and purity). These ana-
lytical results are visualized in the next section for specific parameters.

3.3.1 Heisenberg equations

Here, we present the Heisenberg equations for the system (σ, a) and field
(bk, ck, dk) operators. Deriving the raw Heisenberg equations for the field
operators from Eq. (3.1) and transforming them into real-space repre-
sentations, we obtain the following relations that connect the incoming
(r < 0) and outgoing (r > 0) fields:

b̃r(t) = b̃r−t(0) − i
√
κθ(r)θ(t − r)a(t − r), (3.8)

c̃r(t) = c̃r−t(0) − i
√
γθ(r)θ(t − r)σ(t − r), (3.9)

d̃r(t) = d̃r−t(0) − i
√

2γpθ(r)θ(t − r)σ†(t − r)σ(t − r), (3.10)

where θ(x) is the Heaviside step function. From the raw Heisenberg
equations for the system operators and the above input–output relations,
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the Heisenberg equations for system operators are given by

d
dt
σ = −iω̃dσ − ig(1 − 2σ†σ)a

− i(1 − 2σ†σ)Nc(t) − i
[
N†d(t)σ + σ†Nd(t)

]
, (3.11)

d
dt

a = −iω̃ca − igσ − iNb(t), (3.12)

where ω̃d = ωd−i(γ/2+γp) and ω̃c = ωc−iκ/2 are respectively the complex
frequencies of the dot and the cavity, and the noise operators are defined
by Nb(t) =

√
κb̃−t(0), Nc(t) =

√
γc̃−t(0), and Nd(t) =

√
2γpd̃−t(0). Note

that the noise operators are the initial-time operators and consequently
N j(t)|0⟩ = 0 ( j = b, c, d).

3.3.2 State vector

The state vector of the overall system at an arbitrary time t is determined
by |ψ(t)⟩ = e−iHt|ψ(0)⟩. Since the initial dot excitation is conserved in the
dot, cavity, b, and c fields, the state vector can be written as

∣∣ψ(t)
〉
=

[
α0(t)σ† + β0(t)a† +

∫
drγ0(r, t)b̃†r +

∫
drδ0(r, t)c̃†r

]
|0⟩

+

∞∑
m=1

∫
dmx

[
αm(x, t)σ† + βm(x, t)a†+∫

drγm(r,x, t)b̃†r +
∫

drδm(r,x, t)c̃†r

]
d̃†x1
· · · d̃†xm

|0⟩, (3.13)

where m denotes the number of excitations in the d field and
∫

dmx

denotes a multi-dimensional integral with respect to x = (x1, x2, · · · , xm).
We can set x1 ≤ · · · ≤ xm without loss of generality. As we show later,
these coefficients are nonzero only when 0 ≤ r ≤ x1 ≤ · · · ≤ xm ≤ t.

First, we discuss α0 and β0. From Eq. (3.13), we can confirm that
α0(t) = ⟨σ(t)σ†(0)⟩ and β0(t) = ⟨c(t)σ†(0)⟩, where ⟨· · ·⟩ = ⟨0| · · · |0⟩. From
Eqs. (3.11) and (3.12), their equations of motion are given by

d
dt

(
α0(t)
β0(t)

)
=

(
−iω̃d −ig
−ig −iω̃c

)(
α0(t)
β0(t)

)
, (3.14)
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Figure 3.2: λ1 and λ2 in the complex plane. λ1 = −iω̃d and λ2 = −iω̃c

when g = 0. Dotted lines show their traces as g increases.

with the initial conditions α0(0) = 1 and β0(0) = 0. The solutions are
given by

α0(t) = A1eλ1t + A2eλ2t, (3.15)

β0(t) = B1eλ1t + B2eλ2t, (3.16)

where λ1 and λ2 are the two eigenvalues of the 2 × 2 matrix in Eq. (3.14)
(see Fig. 3.2), A1 = (λ1 + iω̃c)/(λ1 − λ2), A2 = (λ2 + iω̃c)/(λ2 − λ1), and
B1 = −B2 = −ig/(λ1−λ2). The real parts of λ1 and λ2 are always negative
and consequentlyα0 and β0 vanish as t→∞. Equation (3.13) also implies
that γ0(r, t) = ⟨b̃r(t)σ†(0)⟩ and δ0(r, t) = ⟨c̃r(t)σ†(0)⟩. From Eqs. (3.8) and
(3.9), we have

γ0(r, t) = −i
√
κβ0(t − r), (3.17)

δ0(r, t) = −i
√
γα0(t − r). (3.18)

Rigorously, θ(r)θ(t − r) should appear on the right-hand sides of these
equations. However, below, we implicitly assume 0 ≤ r ≤ x1 ≤ · · · ≤
xm ≤ t and omit the Heaviside functions.

Next, we proceed to investigate higher-order quantities. We con-
sider α1 and β1 as examples. Applying the same reasoning as that
for γ0 and δ0, we have α1(x, t) = −i

√
2γp⟨σ(t)σ†(t − x)σ(t − x)σ†(0)⟩
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and β1(x, t) = −i
√

2γp⟨a(t)σ†(t − x)σ(t − x)σ†(0)⟩. Thus, we need to
evaluate the two-time correlation functions, ⟨σ(t2)σ†(t1)σ(t1)σ†(0)⟩ and
⟨a(t2)σ†(t1)σ(t1)σ†(0)⟩with t2 > t1 > 0. Their equations of motion with re-
spect to t2 have the same form as Eq. (3.14) and their initial values (t2 → t1)
are α0(t1) and 0, respectively. This implies that the two-time correlation
functions can be factorized as ⟨σ(t2)σ†(t1)σ(t1)σ†(0)⟩ = α0(t2− t1)α0(t1) and
⟨a(t2)σ†(t1)σ(t1)σ†(0)⟩ = β0(t2 − t1)α0(t1). Thus, we have

α1(x, t) = −i
√

2γpα0(t − x)α0(x), (3.19)

β1(x, t) = −i
√

2γpα0(t − x)β0(x). (3.20)

Repeating the same arguments, all coefficients can be written as products
of α0 and β0, as follows:

αm(x, t) =
(
−i
√

2γp

)m
α0(t − xm)α0(xm − xm−1) · · ·α0(x2 − x1)α0(x1),

(3.21)

βm(x, t) =
(
−i
√

2γp

)m
α0(t − xm)α0(xm − xm−1) · · ·α0(x2 − x1)β0(x1),

(3.22)

γm(r,x, t) =
(
−i
√
κ
) (
−i
√

2γp

)m
α0(t − xm)α0(xm − xm−1) · · ·α0(x2 − x1)β0(x1 − r),

(3.23)

δm(r,x, t) =
(
−i
√
γ
) (
−i
√

2γp

)m
α0(t − xm)α0(xm − xm−1) · · ·α0(x2 − x1)α0(x1 − r).

(3.24)

3.3.3 Decay of dot excitation

The state vector of Eq. (3.13) fully describes the dynamics of the overall
system, including both its transient and asymptotic behaviors. In this
section, as an example of a transient phenomenon, we analyze the decay
of the dot excitation. The survival probability of the dot excitation is
defined as

P(t) = ⟨ψ(t)|σ†σ|ψ(t)⟩. (3.25)
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From Eqs. (3.13) and (3.21), we have

P(t) = |α0(t)|2 + 2γp

∫
dx|α0(t − x)|2|α0(x)|2 + · · · . (3.26)

We here introduce the Laplace transform of |α0|2, which is defined by
L|α0|2(z) =

∫ ∞
0 dte−zt|α0(t)|2. It is given by

L|α0|2(z) =
∑

m,n=1,2

AmA∗n
z − λm − λ∗n

, (3.27)

where λ1,2 and A1,2 are defined in Sec. 3.3.2. The Laplace transform of
P(t) is then given by

LP(z) =
L|α0|2(z)

1 − 2γpL|α0|2(z)
. (3.28)

P(t) is obtained by analyzing the poles of this function in the z-plane. We
denote the four roots of the equation 1−2γpL|α0|2(z) = 0 byµ j ( j = 1, · · · , 4)
(see Fig. 3.3). P(t) is then given by

P(t) =
4∑

j=1

E jeµ jt, (3.29)

E j =

∏
m′,n′=1,2(µ j − λm′ − λ∗n′)∏

i(, j)(µ j − µi)

∑
m,n=1,2

AmA∗n
µ j − λm − λ∗n

. (3.30)

Note that the real parts of µ j are always negative and that the survival
probability P(t) vanishes in the t→∞ limit, as expected.

3.3.4 Density matrix of emitted photon

In the t → ∞ limit, the initial dot excitation is completely transformed
into a photon propagating in the intended mode (b field) or in unintended
directions (c field). In the following subsections, we analyze the photon
emitted in the b-field. It is fully characterized by its density matrix ρ̂(t).
In the real space representation, the matrix element ρ(r, r′, t) is given by

ρ(r, r′, t) = ⟨ψ(t)|̃b†r′ b̃r|ψ(t)⟩. (3.31)
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Figure 3.3: µ j ( j = 1, · · · , 4) in the complex plane. When γp is absent,
µ1 = λ1 + λ∗1, µ2 = λ1 + λ∗2, µ3 = λ2 + λ∗1, and µ4 = λ2 + λ∗2. Dotted lines
indicate their traces as γp increases. Real parts of µ j are always negative
for any γp.

We make the following three comments regarding this quantity: (i) ρ̂(t)
is Hermitian, namely ρ(r′, r, t) = ρ∗(r, r′, t). Therefore, we need consider
only the r < r′ region in this subsection. (ii) As we will see later, ρ(r, r′, t) =
ρ(r − t, r′ − t) in the t→∞ limit. This reflects translational motion of the
emitted photon. (iii) Trρ̂(t) =

∫
drρ(r, r, t) represents the probability of

finding the emitted photon in the b field. This is unity when γ = 0.
Using Eqs. (3.13) and (3.23), the matrix element can be rewritten as

ρ(r, r′, t) = κβ0(t − r)β∗0(t − r′) + 2γpκ

∫
dxβ0(x − r)β∗0(x − r′)|α0(t − x)|2 + · · · .

(3.32)

We here introduce the Laplace transform of β0β∗0, which is defined by
Lβ0β∗0(r, r

′, z) =
∫ ∞

0 dte−ztβ0(t − r)β∗0(t − r′). It is given by

Lβ0β∗0(r, r
′, z) =

∑
m,n=1,2

BmB∗n
z − λm − λ∗n

eλm(r′−r)−r′z, (3.33)

where λ1,2 and B1,2 are defined in Sec. 3.3.2. The Laplace transform of
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ρ(r, r′, t) is then given by

Lρ(r, r′, z) =
κLβ0β∗0(r, r

′, z)
1 − 2γpL|α0|2(z)

. (3.34)

By analyzing the poles of this function in the z-plane, ρ(r, r′, t) is obtained
as follows:

ρ(r, r′, t) =
4∑

j=1

2∑
m=1

ρ jmeλm(r′−r)−µ j(t−r′), (3.35)

ρ jm =

∏
m′,n′=1,2(µ j − λm′ − λ∗n′)∏

i(, j)(µ j − µi)

2∑
n=1

BmB∗n
µ j − λm − λ∗n

, (3.36)

where 0 < r < r′ < t and µ j ( j = 1, · · · , 4) are defined in Sec. 3.3.3. We can
check that this quantity depends on only two variables, r − t and r′ − t.

3.3.5 Pulse shape

The pulse shape of the emitted photon is characterized by the intensity
distribution

f (r, t) = ⟨ψ(t)|̃b†r b̃r|ψ(t)⟩ = ρ(r, r, t), (3.37)

which is the diagonal element of the density matrix. This quantity is real
and positive in 0 < r < t. By setting r′ = r in Eq. (3.35), we have

f (r, t) =
4∑

j=1

f je−µ j(t−r), (3.38)

f j =

∏
m′,n′=1,2(µ j − λm′ − λ∗n′)∏

i, j(µ j − µi)

2∑
m,n=1

BmB∗n
µ j − λm − λ∗n

. (3.39)

3.3.6 Frequency Spectrum

The frequency spectrum of the emitted photon is defined by

S(k, t) = ⟨ψ(t)|b†kbk|ψ(t)⟩. (3.40)
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Apparently, S(k, t) becomes independent of t in the t→ ∞ limit, and we
are interested in S(k) = limt→∞ S(k, t). By definition, S(k, t) is the Fourier
transform of the density matrix element:

S(k, t) =
1

2π

∫∫
drdr′eik(r′−r)ρ(r, r′, t). (3.41)

We consider the Laplace transform of S(k, t) defined byLS(k, z) =
∫ ∞

0 dte−ztS(k, t).
Using Eqs. (3.34) and (3.41), it is given by

LS(k, z) =
κ

2π

L′β0β∗0
(k, z)

1 − 2γpL|α0|2(z)
, (3.42)

where

L′β0β∗0
(k, z) =

∫ ∞
0

dt
∫∫

drdr′eik(r′−r)−ztβ∗0(t − r′)β∗0(t − r)

=

∫ ∞
0

dte−zt

∣∣∣∣∣
2∑

m=1

Bm

λm + ik
(e−ikt − eλmt)

∣∣∣∣∣
2

. (3.43)

Note that L′β0β∗0
has a pole at z = 0. Since our interest lies in the t → ∞

limit of S(k, t), we need to investigate the pole of LS(k, z) at z = 0 only.
Therefore, S(k) = (κ/2π)[1 − 2γpL|α0|2(0)]−1 Resz=0[L′β0β∗0

(k, z)]. After some
calculations, we obtain

S(k) =
N

|(k − ω̃d)(k − ω̃c) − g2|2 , (3.44)

where N = (κg2/2π)[1 − 2γpL|α0|2(0)]−1 is a factor that is independent
of k. This spectral shape was predicted by Glauber [103], and it was
confirmed in recent theoretical studies based on the quantum Langevin
equations [58, 59] and the Master equations [60, 61, 62].

3.3.7 Purity

Quantum information processing requires high indistinguishability be-
tween single photons. A popular measure of indistinguishability of
photons is the coincidence probability Pco in two-photon interference
experiments (see Fig. 3.4). When two indistinguishable photons are si-
multaneously input to a beamsplitter, they always appear at the same
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Figure 3.4: Schematic illustration of two-photon interference experiment.
The coincidence probability vanishes when the two input photons are
completely indistinguishable.

output port (Hong–Ou–Mandel interference), namely, Pco = 0. However,
pure dephasing generates entanglement between an emitted photon and
the environment of its source, and it makes two-photon interference im-
perfect (Pco > 0). The coincidence probability is related to the purity P
of a photon by Pco = (1 − P)/2 (see Appendix 3.A for the derivation).

The purity is defined in terms of the density matrix ρ̂(t) by

P ≡ Tr[ρ̂2(t)]
Tr[ρ̂(t)]2 . (3.45)

As expected, this quantity becomes independent of t when t is sufficiently
large. Using the real-space matrix element, the purity can be rewritten
as

P =
∫

drdr′ρ(r, r′, t)ρ(r′, r, t)[∫
drρ(r, r, t)

]2 =

∫
drdr′|ρ(r, r′, t)|2[∫

drρ(r, r, t)
]2 . (3.46)
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Using Eq. (3.36), we have

P = Pn

Pd
, (3.47)

Pn =

4∑
j, j′=1

2∑
m,m′=1

2ρ jmρ∗j′m′

(µ j + µ∗j′)(λm + λ∗m′)
, (3.48)

Pd =

4∑
j=1

2∑
m=1

ρ jm

−µ j
. (3.49)

Pd is an efficiency of two photons to go into the intended modes and
Pd = 1 if γ = 0.

3.4 Numerical results

The analytical results derived in the previous section are rigorous and
applicable to any set of parameters, (ωd−ωc, g, κ, γ, γp). In this section, we
visualize these results by employing specific parameters. Throughout
this section, we assume for simplicity that radiative decay to unintended
modes does not occur (γ = 0).

3.4.1 Zeno and Anti-Zeno effects

First, we observe the effects of pure dephasing on decay of the dot
excitation. We focus on the weak-coupling regime (κ = 6g) in this
subsection, where the dot decays monotonically without revival and
obeys the exponential decay law to a high accuracy. The decay rate of
the dot is well defined in this case and is given byΓ = limt→∞[− log P(t)/t].
This reduces to min j |Re µ j|, where µ j is defined in Sec. 3.3.3.

Figure 3.5 shows the temporal behavior of the survival probability
P(t). In Fig. 3.5(a), where the dot is in resonance with the cavity (ωd = ωc),
the decay becomes slower as pure dephasing increases. In contrast, in
Fig. 3.5(b), where the dot is detuned from the cavity (ωd − ωc = 600
µeV), the decay becomes faster under small pure dephasing (γp = 200
µeV), whereas the decay becomes slower under larger pure dephasing
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Figure 3.5: Survival probability S(t) for (a) resonant (ωd = ωc) and (b) de-
tuned (ωd − ωc = 600 µeV) cases. g = 25 µeV and κ = 150 µeV. The
values of γp are indicated in the figures.

(γp = 12800 µeV). Such suppression and enhancement of decay can
be interpreted as the quantum Zeno and anti-Zeno effects, since pure
dephasing plays the same role as repeated measurements in destroy-
ing quantum coherence [102, 60]. Previous analyses predict that the
anti-Zeno effect can be observed only when the dot–cavity detuning is
large and pure dephasing is small [102]. This agrees with the present
numerical results.

Figure 3.6 shows the dependence of the radiative decay rate Γ on
the pure-dephasing rate γp. To clearly observe the Zeno and anti-Zeno
effects, Γ(γp) is normalized by the free decay rate of Γ(0): Γ(γp)/Γ(0) < 1
indicates the Zeno effect, whereas Γ(γp)/Γ(0) > 1 exhibits the anti-Zeno
effect. Non-monotonous behavior of Γ(γp) is clearly observed for large
detuning.

3.4.2 Pulse shape and spectrum

In this subsection, we examine the pulse shape and the frequency spec-
trum of the emitted photon using the same parameters as those used in
the previous subsection. First, we observe the results for the resonant
(ωd = ωc) case. The pulse shapes f (r, t) of the emitted photon are shown
in Fig. 3.7(a) for three pure dephasing rates γp. Each pulse shape is nor-
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Figure 3.6: Dependence of the radiative decay rate Γ̃ on the pure-
dephasing rate γp. The radiative decay rate is normalized by the free
decay rate (i.e., the rate for γp = 0). g = 25 µeV and κ = 150 µeV.
ωd − ωc = 0 (solid), 66 µeV (dotted) and 150 µeV (dashed).

malized [
∫ t
−∞ dr f (r, t) = 1] sinceγ = 0 is assumed here and a single photon

is necessarily generated in the b field. The pulse becomes longer as pure
dephasing increases. This is consistent with the quantum Zeno effect
discussed in the previous subsection: In the resonant case, the decay of
the dot becomes monotonously slower with increasing pure dephasing.
Figure 3.7(b) shows the spectra S(k) of the photon for the same parame-
ters as Fig. 3.7(a). These spectra have a single peak at k = ωd(= ωc) and
are normalized [

∫ ∞
−∞ dkS(k) = 1]. The spectrum broadens with increasing

pure dephasing. This is confirmed by Fig. 3.7(c) in which the spectral
width (defined as ∆ = [

∫
dk(k − ωd)2S(k)]1/2) is plotted as a function of

the pure dephasing rate. Thus, the pulse broadens in both real and fre-
quency spaces with increasing γp and it is thus not Fourier-limited. This
implies the mixedness of the emitted photon when γp , 0. The purity of
the photon is discussed later in Sec. 3.4.3.

Next, we observe the results for the detuned case. Figure 3.8 (a)
shows the pulse shapes of the photon. The pulse shape is approxi-
mately exponential except for the oscillatory behavior at the very initial
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Figure 3.7: (a) Pulse shape f (r, t) and (b) spectrum S(k) of emitted photon.
g = 25 µeV, κ = 150 µeV and ωd −ωc = 0. γp = 0 (solid), 50 µeV (dotted),
and 200 µeV (dashed). (c) Spectral width as a function of γp.

stage. The pulse length is inversely proportional to the decay rate of
the dot. Figure 3.8(b) shows the photon spectra for the same parameters
as Fig. 3.8(a). A notable difference from the resonant cases is that the
spectra are doubly peaked with peaks at both the dot frequency ωd and
the cavity frequency ωc. The widths of these peaks are determined by
|Imω̃d| = γ/2+γp and |Imω̃c| = κ/2. Therefore, the width of the peak atωd

is sensitive to pure dephasing. When pure dephasing is weak (γp ≪ κ/2)
as in atomic cavity QED systems, the dominant peak of S(k) appears atωd.
In contrast, when pure dephasing is strong (γp ≫ κ/2) as in solid-state
systems, the dominant peak of S(k) appears at ωc. This partly explains
the detuned peaks observed in the resonance fluorescence spectrum in
solid-state cavity QED systems.

The mean energy of the emitted photon is evaluated by Ep =
∫

dk kS(k).
Due to energy conservation, the mean photon energy is expected to al-
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Figure 3.8: (a) Pulse shape f (r, t) and (b) spectrum S(k) of emitted photon.
g = 25 µeV, κ = 150 µeV and ωd − ωc = 600 µeV. γp = 0 (solid), 50 µeV
(dotted), and 200 µeV (dashed).

ways be identical to the dot frequency (i.e., Ep = ωd). However, Fig. 3.8(b)
clearly shows that the mean photon energy is sensitive to pure dephasing
and may deviate from the dot frequency when pure dephasing is present.
This discrepancy can be resolved by considering the energy released to
the environment during decay, which is given by Ee =

∫
dk k⟨d†kdk⟩. It can

be shown that (see Appendix 3.B for derivation)

Ep =
κ

κ + 2γp
ωd +

2γp

κ + 2γp
ωc, (3.50)

Ee =
2γp

κ + 2γp
(ωd − ωc). (3.51)

Thus, energy conservation is satisfied when the environmental energy
is included (Ep + Ee = ωd). An important insight here is that while pure
dephasing coupling never induces a transition in the dot, this coupling
enables energy exchange between the dot and the environment. When
the cavity frequency exceeds the dot frequency, Eq. (3.51) indicates that
the dot may absorb environmental energy during decay [104].

3.4.3 Purity

The pulse shape and spectrum presented in Figs. 3.7(a) and (b), respec-
tively, indicate that the emitted photon is not Fourier limited when pure
dephasing is present and it is thus in a mixed state. Here, we observe
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Figure 3.9: Dependences of the purity on γp. In (a), g and κ are fixed
(g = 25 µeV, κ = 50 µeV) and the detuning is varied: ωd − ωc = 0
(solid) and 200 µeV (dotted). In (b), g and ωd − ωc are fixed (g = 25 µeV,
ωd −ωc = 0) and κ is varied: κ = 50 µeV (solid), 200 µeV (dotted) and 2.5
µeV (dashed).

how the purity of the emitted photon depends on the system parameters.
The purity is approximately determined by the product of τ (dot exci-
tation lifetime before it leaves the cavity) and γp (pure dephasing rate):
P ≃ 1 when γpτ ≪ 1, whereas P ≃ 0 when γpτ ≫ 1. In Fig. 3.9(a), the
purity is plotted as a function of γp by fixing the escape rate of the cavity
photon (κ = 50 µeV) and varying the detuning ωd − ωc. As expected,
the purity is unity in the γp → 0 limit and decreases with increasing γp.
Detuning between the dot and cavity reduces the purity of the emitted
photon because the excitation lifetime τ increases with increasing detun-
ing. In Fig. 3.9(b), the purity is plotted as a function of γp by assuming
there is no detuning (ωd = ωc) and varying κ. The purity is maximized
when κ = 50 µeV, where is comparable to g. This can be understood as
follows: When κ ≪ g, the excitation lifetime τ increases and the purity
is degraded due to the long lasting Rabi oscillation between the dot and
the cavity. In contrast, when κ ≫ g, τ increases due to overdamping.
The optimal value of κ is more clearly seen in Fig. 3.10, where the pu-
rity is plotted as a function of κ for several values of γp. The purity is
maximized when κ is comparable to g, regardless of γp.
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Figure 3.10: Dependences of the purity on κ. g and ωd − ωc are fixed
(g = 25 µeV, ωd − ωc = 0). γp = 2.5 µeV (solid), 25 µeV (dotted), and 250
µeV (dashed).

3.4.4 Time filtering

In order to increase the purity of emitted photons, one effective way is
only to use photons emitted into an output channel in an early stage,
because such a photon has no time to be affected by dephasing due to
the environment. The purity of photons filtered in the temporal regime
0 ≤ t ≤ T is written as

P(T) =
Pn(T)
Pd(T)

, (3.52)

Pn(T) =
2ρ jmρ∗j′m′

(λm + λ∗m′)

[
1 − e(µ j+µ∗j′ )t

µ j + µ∗j′
+

e(λm+λ∗m′ )t − e(µ j+µ∗j′ )t

λm + λ∗m′ − µ j − µ∗j′

]
, (3.53)

Pd(T) =

 4∑
j=1

2∑
m=1

ρ jm

−µ j
(1 − eµ jt)

2

. (3.54)

The denominator Pd(T) is a square of a probability that a photon is
emitted during 0 ≤ t ≤ T, and equals to a probability that both of two
photon sources produce one photon. We call Pd(T) a efficiency of time
filtering. Although the numerator Pn(T) is always smaller than Pn(∞),
the total purity P(T) is improved from Pd(∞) as the denominator Pd(T)
becomes smaller than 1.
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Figure 3.11: (a) Purities P(T) and (b) efficiencies Pd(T) as a function of
γp. The detuning is taken as ωd − ωc = 0 (solid) and 200 µeV (dotted) by
fixing g and κ (g = 25 µeV, κ = 50 µeV). In the figure (a), thin and thick
lines show the purity without filtering and with time filtering (T = 2/g),
respectively.

Fig. 3.11(a) shows the improved purity when the filtering time is taken
as T = 2/g, and other parameters are taken as the same as Fig. 3.9 (a).
Both in the on-resonant and off-resonant case, the purity is improved
by time filtering and converged to a finite value in the limit of γp →
∞. Fig. 3.11(b) shows the efficiency Pd(T). The efficiency decreases
exponentially in the limit of γp →∞. This can be understood by increase
of the decay time due to the Zeno effect.

In actual experiments, time filtering with too small T is not realistic,
because the efficiency Pd(T) gets small down to an unacceptable level.
Fig. 3.12 shows the improved purity with fixed efficiency (Pd(T) = 1/2)
as a function of γp. Maximum magnification of the purity is expected
naively to be an inverse of the efficiency. This maximum is achieved
when γp is large, however, in that case T is also large. Too large fil-
tering time T is also unrealistic, because in real experiment there is a
spontaneous emission into a vacuum with a finite rate γ, neglected in
the present calculation. Probably, the optimum value of T is of order of
1/g. If we need photons whose purity P > 0.6, the pure dephasing rate
must be less than 0.03g without filtering, however, with filtering, pure
dephasing rate can be large within < 0.08g.
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Figure 3.12: (a) Dependences of the purity on γp. g, κ and ωd − ωc are
fixed (g = 25 µeV, κ = 50 µeV ωd − ωc = 0). The solid and dotted
line are the purity with time filtering (T = 2/g and the fixed efficiency
Pd = 0.5) and without time filtering, respectively. (b) Dependences of
the corresponding filtering time T on γp.

3.5 Summary

We analyzed radiative decay of an excited dot in a solid-state cavity
QED system and investigated the quantum-mechanical properties of the
emitted photon, stressing the effects of pure dephasing. Our analysis
is based on a model in which all the elements of the system (including
environmental ones) are treated as active quantum-mechanical degrees
of freedom. We rigorously solved the time evolution of the overall
system, and derived analytical expressions for the density matrix, pulse
shape, spectrum, and purity of the emitted photon. These analytical
results were visualized under realistic parameters. The main results are
summarized as follows: (i) Changes in the dot decay rate due to pure
dephasing can be explained in terms of quantum Zeno and anti-Zeno
effects. The emitted photon pulse length is approximately given by the
inverse of the dot decay rate. (ii) The emitted photon spectrum agrees
with the Glauber formula. The mean energy of an emitted photon is
not necessarily identical to that of the dot and energy conservation is
seemingly broken. However, the present analysis revealed that the dot
can exchange energy with the environment through pure dephasing
coupling. Energy conservation holds when the environmental energy is
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included. (iii) The purity of the emitted photon is calculated as a measure
of indistinguishability. The purity is approximately determined by the
product of the pure dephasing rate and excitation lifetime before leaving
the cavity. When the pure dephasing rate γp is fixed, the optimum
condition for maximizing the purity is ωd = ωc and κ ∼ g. (iv) Effects
of time filtering are discussed. The purity is improved by filtering out
photons emitted later. In actual experiments, the optimum filtering time
will depend on to what extent we can permit a lowered efficiency.

Appendix 3.A Relation between coincidence prob-
ability and purity

Here we prove the relation Pco = (1 − P)/2 between the coincidence
probability Pco and the purity P. We consider the following situation
(see Fig. 3.4). Two solid-state emitters (S1 and S2) respectively emit
single photons simultaneously and deterministically (assuming γ = 0
for simplicity) into two input ports (P1 and P2) of a beamsplitter. These
two photons are mixed by the beamsplitter and are output into the ports
(P3 and P4). We denote the photon field operators for the port P j by b̃( j)r

( j = 1, · · · , 4), and the pure-dephasing reservoir operators for the emitter
S j by d̃( j)r ( j = 1, 2). Assuming t→∞ and γ = 0 (and therefore δm = 0) in
Eq. (3.13), the state vector of P1 photon is given by

|ψ1⟩ =
∞∑

m=0

∫
drdmxγm(t, r,x)b̃†(1)r|x⟩, (3.55)

where |x⟩ = d̃†(1)x1
· · · d̃†(1)xm

|0⟩. Thus, the emitted photon is entangled with
the environment of its source. The input state vector including both P1

and P2 photons is then given by

|ψ12⟩ =
∞∑

m,n=0

∫
drdr′dmxdnx′ γm(t, r,x)γn(t, r′,x′)b̃†(1)rb̃

†
(2)r′ |x;x′⟩, (3.56)

where |x;x′⟩ = d̃†(1)x1
· · · d̃†(1)xm

d̃†(2)x′1
· · · d̃†(2)x′n |0⟩.
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The beamsplitter mixes two photons as b̃†(1)r → [b̃†(3)r + b̃†(4)r]/
√

2 and
b̃†(2)r → [b̃†(3)r − b̃†(4)r]/

√
2, but obviously does not affect the environmental

degrees of freedom. Then, the output state vector is given by |ψout⟩ =
|ψ33⟩ + |ψ44⟩ + |ψ34⟩, where

|ψ33⟩ =
∞∑

m,n=0

∫
drdr′dmxdnx′

γm(t, r,x)γn(t, r′,x′)
2

b̃†(3)rb̃
†
(3)r′ |x;x′⟩, (3.57)

|ψ44⟩ = −
∞∑

m,n=0

∫
drdr′dmxdnx′

γm(t, r,x)γn(t, r′,x′)
2

b̃†(4)rb̃
†
(4)r′ |x;x′⟩, (3.58)

|ψ34⟩ =
∞∑

m,n=0

∫
drdr′dmxdnx′

γm(t, r,x)γn(t, r′,x′) − γm(t, r′,x)γn(t, r,x′)
2

b̃†(3)rb̃
†
(4)r′ |x;x′⟩. (3.59)

It is readily confirmed that ⟨ψ33|ψ33⟩ + ⟨ψ44|ψ44⟩ + ⟨ψ34|ψ34⟩ = 1 and
⟨ψ33|ψ33⟩ = ⟨ψ44|ψ44⟩. The coincidence probability Pco, namely, the prob-
ability to find single photons in both ports 3 and 4, is given by Pco =

⟨ψ34|ψ34⟩. Since the density matrix element is given by

ρ(r, r′, t) =
∞∑

m=0

∫
dmxγ∗m(r′,x, t)γm(r,x, t), (3.60)

Pco is recast into the following form:

P11 =
1
2
− 1

2

∫
drdr′ρ(r, r′, t)ρ(r′, r, t) =

1 − P
2

. (3.61)

When pure dephasing is present, the purity of the emitted photon be-
comes less than unity and the coincidence probability becomes nonzero.

Appendix 3.B Proof of Eqs. (3.50) and (3.51)

Here we analytically evaluate Ep =
∫

dk k⟨b†k(t)bk(t)⟩i and Ee =
∫

dk k⟨d†k(t)dk(t)⟩i
in the t→∞ limit, where ⟨· · ·⟩i = ⟨ψi| · · · |ψi⟩. Switching to the real-space
representations, we have

Ep =
i
2

∫
dr
〈

(∂rb̃†r )b̃r − b̃†r (∂rb̃†r )
〉

i
, (3.62)

Ee =
i
2

∫
dr
〈

(∂rd̃†r )d̃r − d̃†r (∂rd̃†r )
〉

i
. (3.63)
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We can confirm from Eq. (3.8) that ⟨(∂rb†r )br⟩i = −κθ(t − τ)θ(τ)⟨( d
dτa†)a⟩i,

where τ = t − r. Using similar equations, we have

Ep = −
iκ
2

∫ ∞
0

dτ
〈
( d

dτa†)a − a†( d
dτa)
〉

i , (3.64)

Ee = −iγp

∫ ∞
0

dτ
〈
( d

dτσ
†σ)σ†σ − σ†σ( d

dτσ
†σ)
〉

i . (3.65)

Using Eqs. (3.11), (3.12) and their conjugates, we have

Ep = κωc

∫ ∞
0

dτ⟨a†a⟩ + gκ
2

∫ ∞
0

dτ
(
⟨a†σ⟩ + ⟨σ†a⟩

)
, (3.66)

Ee = gγp

∫ ∞
0

dτ
(
⟨a†σ⟩ + ⟨σ†a⟩

)
. (3.67)

Thus, we need to evaluate I1 =
∫ ∞

0 dτ⟨σ†σ⟩, I2 =
∫ ∞

0 dτ⟨a†a⟩, and I3 =∫ ∞
0 dτ⟨σ†a⟩.

The equations of motion for ⟨σ†σ⟩, ⟨a†a⟩, and ⟨σ†a⟩ are given by

d
dt
⟨σ†σ⟩ = −γ⟨σ†σ⟩ − ig(⟨σ†a⟩ − c.c.), (3.68)

d
dt
⟨a†a⟩ = −κ⟨a†a⟩ + ig(⟨σ†a⟩ − c.c.), (3.69)

d
dt
⟨σ†a⟩ = i(ω̃∗d − ω̃c)⟨σ†a⟩ + ig(⟨a†a⟩ − ⟨σ†σ⟩). (3.70)

Integrating these equations with respect to τ, we have 1 = γI1+ ig(I3− I∗3),
0 = κI2−ig(I3−I∗3), 0 = i(ω̃∗d−ω̃c)I3+ig(I2−I1). When γ = 0, these equations
are solved to yield I2 = 1/κ and I3 = (i/g)× (ω̃∗c − ω̃d)/(ω̃c + ω̃d − ω̃∗c − ω̃∗d).
Since Ep = κωcI2+(gκ/2)(I3+I∗3) and Ee = gγp(I3+I∗3), we obtain Eqs. (3.50)
and (3.51).



Chapter 4

Single-Electron Generator

4.1 Introduction

On-demand coherent single electron source is a promising candidate for
transport of quantum information with mobile electrons [79]. For actual
application, however, we have to evaluate effect of strong Coulomb
interaction between a mobile electron and background (environment)
electrons, and to make efforts for reducing its dephaing effect. Whereas
dephasing effect due to environment noise has been studied by a simple
phenomenological model so far [88, 89], there is no theoretical study to
clarify effect of Coulomb interaction between electrons.

In this chapter, we consider dephasing effect in single-electron gener-
ation caused by environment noise to a quantum dot, and by Coulomb
interaction between electrons. The former calculation is almost the same
as the one for single-photon generation, and is helpful to understand
dephasing process on electrons. For the latter calculation, we employ
a powerful diagrammatic method of the Keldysh type [105, 106]. We
show that the present problem is closely related to the so-called Fermi-
edge singularity, which originates from anomalous edge effect in X-ray
absorption [107, 108, 109, 110, 111]. We note that dephasing effect to
quantum states of a localized electron in a quantum dot has been studied
to explain strange nonequilibrium effect in the Mach-Zehnder interfer-
ometer made by edge channels of the IQH state [112, 113, 114].
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quantum dot

edge state

Figure 4.1: A model of single electron generator.

This chapter is organized as follows. We investigate quantum nature
of emitted electrons under dephasing effect. We first calculate survival
probabilities, spectra, and purities of injected electrons under environ-
ment noise in Sec. 4.2. Next, we calculate them under dephasing caused
by Coulomb interaction in Sec. 4.3. We finally summarize the results in
Sec. 4.4.

4.2 Pure dephasing due to environment noise

4.2.1 Model

Our model consists of a quantum dot connected to a chiral edge mode
in IQH states illustrated in Fig. 4.1, and is described by the Hamiltonian

H0 = Hdot +Hedge +Ht, (4.1)

Hdot = ϵdd†d, (4.2)

Hedge =

∫
dkka†kak, (4.3)

Ht = g(ã†0d + d†ã0), (4.4)

where Hdot, Hedge, and Ht express a quantum dot, a one-dimensional
chiral edge channel, and tunneling between a dot and a edge channel at
the origin. Here, ϵd is an energy level of a quantum dot, g is a tunneling
amplitude between the quantum dot and the one-dimensional chiral
edge state, the wavenumber k of the edge state is measured from the
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Fermi wavenember, and the Fermi velocity is set to be unity. The level
broadening is given as Γ = g2 in this unit.

We consider the Hamiltonian H = H0 +Henv, where the latter de-
notes effect of environment noise. Here, we employ a simple model for
environment noise by using an additional one-dimensional bosonic port
as

Henv =

∫
dk
[
kc†kck +

√
γp/πd†d(c†k + ck)

]
, (4.5)

where γp is a pure dephasing rate.

4.2.2 Result

Under the condition Γ ≪ ϵd, we can calculate analytically the sur-
vival probability P1(t) = ⟨ψ(t)|d†1d1|ψ(t)⟩, the density matrix of emitted
electrons ρ(r, r′, t) = ⟨ψ(t)|b†r′br|ψ(t)⟩, the pulse profile f (r, t) = ρ(r, r, t),
the spectrum S(k, t) =

∫
dr
∫

dr′e−ik(r−r′)ρ(r, r′, t), and the purity P(T) =∫
dr
∫

dr′ρ(r, r′, t)ρ(r′, r,T)/(
∫

drρ(r, r,T))2 (including to time-filtering ef-
fect by looking at electrons emitted during 0 < t < T) in the same way of
Chap. 3. The results are given as

P1(t) = e−Γt, (4.6)

ρ(r, r′, t) = Γe−(iϵd+Γ/2+γp)(r′−r)−Γ(t−r′), (r < r′), (4.7)

f (r, t) = Γe−Γ(t−r), (4.8)

S(k, t) =
1
π

Γ/2 + γp

(k − ϵd)2 + (Γ/2 + γp)2 , (4.9)

P(T) =
2Γ2

Γ + 2γp

[
1 − e−2ΓT

2Γ
− e−ΓT−2γpT − e−2ΓT

Γ − 2γp

]
/
(
1 − e−ΓT

)2
. (4.10)

We note that ρ(r, r′, t) for (r > r′) is obtained by the symmetric relation
ρ(r, r′, t) = ρ∗(r′, r, t). We stress that the pulse profile, which has been
measured in experiment of single electron generation by average current,
is not affected by pure dephasing rate γp. In other words, we cannot get
information of pure dephasing from the pulse profile. The spectrum
becomes a Lorenzian form with a peak at k = ϵd. The peak width is given
as Γ+ 2γp, and is increased by introduction of pure dephasing. It is clear
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that the emitted electron is not Fourier-limited in the presence the pure
dephasing as observed in calculation of Chap. 3.

For no time filtering (T → ∞), the purity, which is a direct measure
of coherence in two-particle interferometer, is given as

P ≡ P(T→∞) =
1

1 + 2γp/Γ
. (4.11)

The purity monotonically varies from 1 to 0 as γp increases from 0 to∞.
This is a main result for the case of environment noise.

Effect of time filtering is discussed in parallel to the one for single
photon generation. Efficiency of the filtering are independent of pure
dephasing rate, and filtering time T for a fixed efficiency η is explicitly
derived as

T =
−1
Γ

log
[
1 − √η

]
. (4.12)

The purity is improved as Eq. (4.10) by time filtering paying a cost of
reduction of efficiency.

4.3 Effect of Coulomb Interaction

4.3.1 Model

Next, we investigate effect of pure dephasing caused by Coulomb inter-
action. The Hamiltonian for Coulomb interaction is taken as

HC = Ud†dã†0ã0, (4.13)

where U is a local (screened) Coulomb interaction between an electron
in a dot and electrons in a edge channel at the origin.

If we focus on electrons in the edge channel, its Hamiltonian changes
depending on whether an electron in the dot is emitted into a edge
channel or not. We define the Hamiltonian of the edge channel for the
empty dot (nd = 0) and the filled dot (nd = 1) as

h0 = ϵdd†d +
∫

dkka†kak, (4.14)

h1 = ϵdd†d +
∫

dkka†kak +Uã†0ã0. (4.15)
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Figure 4.2: (a) Examples of diagrams (n = 8,n′ = 2); (b)(c) the diagrams
representing high energy process neglected in the present calculation;
(d) a diagram of the self-energy Σ(t); (e) Dyson equation for the survival
probability.

Since we assumed local interaction, the effect of the Coulomb interaction
can be expressed by the phase shift of electrons in the edge channel. We
assume that electrons gain a phase −δ if the dot is filled (nd = 1), where
δ > 0 for repulsive interaction (U > 0).

4.3.2 Method

In order to treat Coulomb interaction, we develop a field-theoretical
method. The essence of our method is to express a arbitrary observable
in the following form

⟨O(t)⟩ =
∫ t

t1>···>tn,t′1>···>tn′
dt1 · · · dtndt′1 · · · dt′n′〈

ψ(0)
∣∣V(t′n′) · · ·V(t′1)OV(t1) · · ·V(tn)

∣∣ψ(0)
〉

(4.16)

as in a usual procedure deriving Keldysh Green’s functions [105, 106].
Here, V is a interaction representation of the tunneling Hamiltonian
Ht. Fig. 4.2 (a) shows an example of diagrams. The horizontal two
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straight lines represent a state of a dot, and the other lines present a
electron propagating in the edge channel. In the present calculation, we
only treat the leading term for small tunneling amplitude g, and neglect
diagrams such as Fig.4.2 (b) and (c) because they describe high energy
processes [106].

The survival probability P1(t) and the decay probability P0(t) = 1 −
P1(t) are formulated by the sum of diagrams under a constraint that
both of the dot states in the upper and lower horizontal line ends the
state nd = 1 and nd = 0, respectively. When we define the lowest-order
self-energy Σ(t) as shown in Fig. 4.2 (d), the survival probability P0(t) is
calculated from the Dyson equation shown in Fig. 4.2 (e). It is convenient
to employ the Laplace transform to sum up diagrams appearing the
Dyson equation. The final result of the Laplace transformation of P1(t)
and P0(t) are given as

P1(λ) ≡
∫ ∞

0
e−λtP1(t) =

1
λ − Σ(λ)

, (4.17)

P0(λ) ≡
∫ ∞

0
e−λtP0(t) =

−Σ(λ)/λ
λ − Σ(λ)

. (4.18)

In a similar way, the density matrix ρ(k, k̄, t) is formulated by the sum of
diagrams under a constraint that an electron with a wavelength k and a
hole with a wavelength k̄ ends at a time t.

First, we consider the survival probability P1(t). In the leading con-
tribution for small g, the self-energy Σ(t) is calculated as

Σ(t) = 2Re
[
(−ig)2eiϵdt

〈
eih1tã†0e−ih0tã0

〉
0

]
, (4.19)

where ⟨· · · ⟩0 = 1
Z

[
ρ0 · · ·

]
, Z = trρ0, and ρ0 = e−βϵ is a density matrix at

initial state which we here take as a product state of a filled dot (nd = 1)
and a Fermi sea at zero temperature. To calculate this average, we adopt
the method in Refs. [115, 116, 117]. We first define an operator ŵ in the
single-particle Hilbert space by

ρ0eih1te−ih0t =
1
Z

exp

(∑
k,k′

wk,k′a†kak

)
. (4.20)
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By using a relation ake−ih1t = e−ih1take−ikt and the determinant formula
derived recently [115], the average in the self-energy is calculated as

Σ(t) = −2g2Re
[

e−i(k−ϵd)t
∫

dkdk̄ det(1̂ + eŵ)(1̂ + e−ŵ)−1
kk̄

]
, (4.21)

The determinant and the inverse (1̂+e−ŵ)kk̄ can be calculated by Riemann-
Hilbert factorization in energy domain [117]. Performing the integral
respect to k̄, we obtain the self energy as

Σ(t) = −2g2Re
[
eiϵdtL(t)D(t)

]
, (4.22)

L(t) =
∫

dk
2π

(1 − n(k))
( −ξ0

k + iη

)2a

e−ikt, (4.23)

D(t) = (−iξ0t)−a2
, (4.24)

where ξ0 is high energy cutoff and a is a normalized phase shift a = δ/π,
η is a low-energy cutoff appearing in the Riemann-Hilbert factorization,
and n(k) is the Fermi distribution function at zero temperature. We note
that L and D represent open and closed diagrams in the work by Nozieres
and de Dominicis, respectively [108]. The Laplace transform of Σ(t) is
then given by

Σ(λ) ≡
∫

dte−λtΣ(t) (4.25)

= − g2

π
Γ(1 − 2a)Γ(2a − a2)Im

[
e2iπa

(
ξ

ϵd + iλ

)a2−2a
]
, (4.26)

where Γ(x) is the Gamma function.
Next, we consider density matrix of emitted electrons. To calculate

density matrix ρ(k, k̄, t), the self-energies defined by the diagrams in
Fig.4.3 (a) are needed. For example, Σ(1A)

kk̄ is given by

Σ(1A)
kk̄ =

∫
dk′dk′′

(2π)2

∫ t

0
dτ(−ig)(ig)eiϵdτ

〈
eih1τak′′eih0(t−τ)a†k̄ake−ih0ta†k′

〉
0 (4.27)

=

∫
dk′dk′′

(2π)2

∫ t

0
dτg2eiϵdτ−ik′′τ−i(k−k̄)t

〈
eŵak′′a†k̄aka†k′

〉
0 (4.28)

=

∫
dk′dk′′

(2π)2

∫ t

0
dτg2eiϵdτ−ik′′τ−i(k−k̄)t det(1̂ + eŵ)(1̂ + eŵ)−1

k′′k̄(1̂ + eŵ)−1
kk′

(4.29)
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(a) (b)

Figure 4.3: diagrams of Σkk̄

In a similar way,

Σ(1B)
kk̄ =

∫
dk′dk′′

(2π)2

∫ t

0
dτg2eiϵdτ−ik′′τ−i(k−k̄)t det(1̂ + eŵ)(1̂ + e−ŵ)−1

k′′k̄(1̂ + eŵ)−1
kk′

(4.30)

Using a relation (1̂ + eŵ)−1
k′′k̄ + (1̂ + e−ŵ)−1

k′′k̄ = δk′′k̄, we obtain

Σ(1)
kk̄ ≡ Σ

(1A)
kk̄ + Σ

(1B)
kk̄ (4.31)

=

∫
dk′

(2π)2

∫ t

0
dτg2eiϵdτ−ik̄τ−i(k−k̄)t det(1̂ + eŵ)(1̂ + eŵ)−1

kk′ (4.32)

The Laplace transform of Σ(1)
kk̄ is derived as

Σ(1)
kk̄ (λ) =

∫
dte−λtΣ(1)

kk̄ (t) (4.33)

= i
g2

ξ0
Γ(1 − a2)

(
ξ0

k + iη

)2a 1
λ + i(k − k̄)

(
ξ0

ϵd − k + iλ

)1−a2

(4.34)

Σ(2)
kk̄ is obtained by complex conjugate of Σ(2)

k̄k .
We mention that hole excitation in edge state (k < 0) does not con-

tribute the density matrix at all. This is because that the sign of the
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phase shift is opposite to electrons due to attractive interaction. For the
attractive scattering, singular behavior due to the Fermi surface effect
is much more weak, and can be shown to be small in comparison with
contribution from electrons.

The density matrix of emitted electron is obtained by

ρ(k, k̄, λ) =
Σkk̄(λ)
λ − Σ(λ)

(4.35)

In order to asymptotic behavior of the spectrum (t→∞), we multiply λ
and take a limit λ→ 0 and k→ k̄. The spectrum can be written as

S(k) = 2Re[Λkk]/(−Σ(0)) (4.36)

=
−2g2

(−Σ(0))ξ0
Γ(1 − a2)Im

[(
ξ0

k + iη

)2a( ξ0

iη − (k − ϵd)

)1−a2]
, (4.37)

=
2g2

(−Σ(0))ξ0
Γ(1 − a2) sinϕ

(
ξ0

k2 + η2

)a( ξ0

(ϵd − k)2 + η2

) 1−a2
2

, (4.38)

ϕ = 2a tan−1 η

k
+ (1 − a2) tan−1 η

ϵd − k
. (4.39)

where Λkk̄ ≡ limλ→0 λΣkk̄ and −Σ(0) behaves as a normalization factor of
the spectrum. We can check the following sum rule:∫

dk
2π
Σkk(λ) =

−Σ(λ)/λ
λ − Σ(λ)

. (4.40)

This relation guarantee that the sum of the spectrum of emitted electrons
is equal to the decay probability P0(t)(= 1 − P1(t)).

Fig. 4.4 shows the spectrum of emitted electrons. If the phase shift
is small enough, the spectrum is Lorentzian which peak is at ϵd. With
increasing the phase shift, a singular peak near the Fermi sea grows
up, and the main peak at ϵd change its form into asymmetric one. We
note that the small peak near the Fermi sea is caused by closed loop
contribution in Nozieres’s work, whereas the growth of the peak near
the Fermi sea indicate degrade of the purity of the emitted electrons.

Finally, we evaluate the purity. We define ρ̃(λ) = ρ(λ + i(k̄ − k)) and
Σ̃(λ) = Σ(λ+ i(k̄− k)) to take the time dependence for sufficiently large t.
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Figure 4.4: (a) A linear plot and (b) a log plot of spectrum S(k). Parameters
are taken as ϵd = g2, η = 0.01g2, and the phase shift is taken as a = δ/π =
0.1 (solid), 0.2 (dotted), and 0.3 (dashed).

We obtain ρ̃(λ) as

ρ̃(λ) =
g
ξ0
Γ(1 − a2)/λ

−iλ + k̄ − k + iΣ̃

[(
ξ0

k + iη

)2a( ξ0

ϵd − k̄ + iλ

)1−a2

−
(

ξ0

k̄ − iη

)2a( ξ0

ϵd − k − iλ

)1−a2]
, (4.41)

Asymptotic behavior of ρ̃ in t → ∞ is derived by limλ→0 λρ̃(λ), which
has singular points at k = k̄ and k̄ − k + iΣ(0) = 0. If we can neglect latter
term, the purity is finally written as

P =
∫

dkdk̄
(2π)2ρ(k, k̄)ρ(k̄, k) (4.42)

=
1

(4πB(1 − 2a, 2a − a2) sin(2aπ))2

∫
dxdx̄

Σ(0)2

(x − x̄)2 + Σ(0)2×∣∣∣∣ 1
(x + iη)2a(1 − x̄ + iη)1−a2 −

1
(x̄ − iη)2a(1 − x − iη)1−a2

∣∣∣∣2 (4.43)

This is a main result for dephasing caused by Coulomb interaction.

4.4 Summary

We have discussed dephasing effect on quantum coherence of single elec-
trons injected from a quantum dot. We have shown that environment
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noise does not change the spatial profile of emitted electrons, whereas
the spectrum and the purity is affected by pure dephasing due to the
environment. For dephasing caused by Coulomb interaction, we have
obtained a singular behavior in the spectrum of emitted electrons. This
singular behavior originates from the Fermi surface effect, which is fa-
mous as a name of the Fermi edge singularity. We expect that this
singular change of quantum nature in emitted electrons strongly affect
the degrade of the purity.



Chapter 5

Shot Noise and Fractional
Statistics

This chapter is organized as follows. After breif introduction in Sec. 5.1,
let us start with our model in Sec.5.2. An operator of quasi-particles in
the edge states is constructed by bosonization techniques of Hamiltonian
representing incompressible liquids. In Sec.5.3, non-equilibrium Kubo
formula in mesoscopic systems is introduced to define shot noise at finite
temperatures. In Sec.5.4, we discuss Fano factor (normalized shot noise)
and propose a way to indirectly obtain statistical angle in hierarchical
FQH states.

5.1 Introduction

The fractional quantum Hall (FQH) effect occurs in the two dimensional
electron system subject to a strong magnetic field. A confining geom-
etry in low disorder samples makes the edges gapless modes, which
carries fractionally charged quasi-particles. The quasi-particles are char-
acterized by exotic features of fractional charge and fractional statistics.
The fractional statistics is determined by a phase gained by adiabatic
exchange process of quasi-particles. The direct observation of these
properties has been a stimulating problem. The fractional charge has
been observed both well by many of shot noise measurements[18, 19, 20,

60
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120, 121, 122], which is now the well-established scheme.
Fractional statistics is also appealing and mutual statistics has been

measured. Other attempts were made in Ref.[124], and Refs.[125, 126]
where cross-correlation in three edge states was studied for the Laughlin
states at zero temperature. Kim extended their works into hierarchi-
cal FQH states at finite frequency and temperature, and then discussed
statistics for ν = 1/5, 2/5 [95]. It is well known that quasi-particles in
ν = 1/5, 2/5 FQH states have the same charge, but obey different statis-
tics. Shot noise measurement in the low-temperature limit succeeded
to confirm the former [120], but failed to do the latter. Ref.[95] gave an
idea to the problem, but not realized in experiments. We revert back to
the standard set up, and discuss shot noise in two edge states instead of
three ones. What is most important point is that finite temperature effects
are considered on the basis of a recent work [127]. It is shown that the
approach enables us to detect the difference of statistics in ν = 1/5, 2/5
FQH states. Finally we discuss a method to determine statistical angle
itself in hierarchical FQH states.

This chapter is organized as follows. Let us start with our model in
Sec.5.2. An operator of quasi-particles in the edge states is constructed
by bosonization techniques of Hamiltonian representing incompressible
liquids. In Sec.5.3, non-equilibrium Kubo formula in mesoscopic systems
is introduced to define shot noise at finite temperatures. In Sec.5.4,
we discuss Fano factor (normalized shot noise) and propose a way to
indirectly obtain statistical angle in hierarchical FQH states.

5.2 Model and method

Fractional quantum hall liquid has energy gap in bulk states due to
Coulomb interaction and it is incompressible. In a system with confining
geometry, edge states exist to satisfy gauge invariance. Canonical quan-
tization of Hamiltonian representing density excitation at edges leads
that the density operator obeys Kac-Moody algebra. By making appro-
priate bosonic operators from the density operators, it is shown that the
edge states can be written as chiral Tomonaga-Luttinger liquid. Oper-
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Figure 5.1: Schematic illustration of setup to detect shot noise.

ators for electrons and quasi-particles can be composed and condition
from electrons’ anti-commutation relation shows that the quasi-particles
are of IQHE or Laughlin’s FQHE states.

Let us consider the quasi-particle tunneling through the QPC set at
x = 0 between edge states[18, 131, 72]. The gapless edge states are de-
scribed by chiral Tomonaga-Luttinger liquids. We begin with Laughlin
states with filling fractions ν = 1/(2n+1) for simplicity. The Hamiltonian
is given by right/left going edge modes HR,HL and the tunneling part
HB:

H = HR +HL +HB (5.1)

HR,L =
vF

π

∫ ∞
−∞

dx
(
∂ϕR,L(x)
∂x

)2

, (5.2)

HB = tBψ
†
R(0)ψL(0) + h.c., (5.3)

where we put Planck constant ℏ one, vF is the Fermi velocity, tB is the
tunneling amplitude of quasi-particles, ϕR,L(x) are chiral boson fields.
The density operator obeys the U(1) Kac-Moody algebra. The operator
for electron can be composed by imposing that the electron obeys the
anti-commutation relation. However, the same procedure cannot give
the operator for quasi-particle because it obeys a different statistics. Wen
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introduced a duality transformation: ν→ 1/ν, and thusψR,L(x) represent
the vertex operators in c = 1 CFT as

ψR,L(x) =
1√
2π

e±ikFx : e∓i
√
νϕR,L(x) : . (5.4)

This construction is also available for hierarchical Laughlin’s states
with K-matrix. K-matrix allows us to write the condition for a filling
factor to make hierarchical states. In such a filling factor, edge states
have multi modes naively. A mode with the maximum exponent carries
charge current and other modes are charge neutral. If we neglect charge
neutral modes, we can construct an operator of quasi-particles by replace
ν to an exponent α. In this study, we neglect charge neutral modes,
however, there is a theoretical work which states the charge neutral
modes becomes relevant at especially low temperature. We discuss later
in this relation.

The quasi-particle hopping with an unit charge e∗ generates backscat-
tering current:

ÎB ≡ ie∗
(
eiω0ttBψ

†
R(0)ψL(0) − e−iω0tt∗Bψ

†
L(0)ψR(0)

)
. (5.5)

Following the discussion of a gauge transformation [72], source-drain
bias voltage V is incorporated into phase factor ω0 = e∗V. The backscat-
tering current and current noise are obtained as

IB =
〈
ÎB(t)

〉
, S =

∫
dt′
〈{
δÎB(t), δÎB(t′)

}〉
.

These quantities can be calculated on the basis of Schwinger-Keldysh
formalism(Appendix 5.B).

5.3 Non-equilibrium Kubo formula

In this section, let us introduce shot noise at finite temperatures, proposed
in the context of a generalization from the Kubo formula: non-equlibrium
Kubo Formula.
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5.3.1 Landauer formula

First, we start with a non-interacting case such as ν = 1. In this case,
Landauer formula is correct and charge current I0

B and its noise S0 can be
written as

I0
B = e

∫
dω
π

T0( fL − fR), (5.6)

S0 = e2
∫

dω
π

T0
[

fL(1 − fL) + fR(1 − fR)
]

= e2
∫

dω
π

T0
[
( fL − fR)2

]
, (5.7)

where fL and fR are Fermi distribution functions of left and right reser-
voirs and transmission probability T0 = |tB|2/v2

F. At zero temperature,
thermal noise vanishes in the first line of Eq. 5.7. The second line of
Eq. 5.7 clearly originates from non-equilibrium nature, called as shot
noise in Landauer formula. At finite temperatures, shot noise separates
from thermal noise. Thus it enables us to investigate shot noise in view
of thermal fluctuation.

5.3.2 Interacting case

Next, we turn to the discussion about interacting case. It is well known
that for correlated electrons Landauer formula is not satisfied in princi-
ple. At zero temperature, thermal noise must vanish and non-equilibrium
shot noise can be defined without any problems. However, corre-
lation effects generally merge thermal noise and shot noise at finite
temperatures??(Eq.5.48). interactions mix bias voltage dependence of
thermal noise and non-equilibrium noise at finite temperature. Thus,
there is arbitrariness about definition of shot noise. It is a problem what
a kind of thermal noise at finite temperature should be subtracted from
total noise and shot noise.

5.3.3 Non-equilibrium Kubo formula

It is well known that the standard Kubo formula determines linear con-
ductance. In contrast, a relation to differential conductance G under
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finite bias voltages were derived [127]. Thus this formula was called as
the nonequilibrium Kubo formula in mesoscopic systems. This formula
is valid for any quantum transport systems with two reservoirs whose
Hamiltonian is described by

H = HL +HR +Hc +HcL +HcR. (5.8)

HL and HR describes left/right reservoirs connected to finite conductor
Hc HcL and HcR describes couplings between the left/right reservoirs and
the conductor. The formula can be applied to various systems, including
quantum dots, quantum point contacts, and chiral Luttinger liquids on
the quantum Hall edge. Then, it was also proposed to define shot noise
at any temperature Sh as the following formula:

Sh ≡ − ⟨{δI, e(δNL − δNR}⟩ , (5.9)

where δA ≡ A − ⟨A⟩. I and NL,R are the charge current and number of
particles in left/right reservoirs. It was proved that Sh in eq.(5.9) has
several aspects expected as shot noise. (i) In a non-interacting system, Sh

directly gives the Landauer-type shot noise at finite temperatures. (ii) At
zero temperature, Sh is agreement with the standard shot noise: current
noise S at T = 0. (iii) In the linear response regime, Sh = 0 and eq.(5.10)
reproduces the Nyquist-Johnson relation. As a result Sh is qualified as
shot noise at finite temperatures. Actually using Sh it was successful to
study shot noise of the Kondo effect in a quantum dot [128, 129, 130].
In this study, we apply the formula to the system represented by 5.1,
replacing I and e Eq. 5.9 to IB and e∗ respectively.

The nonequilibrium Kubo formula also satisfies the relation:

Sh = S − 4kBTG, (5.10)

where S is current noise, G = ∂VIB is differential conductance, kB is
Boltzmann constant, and T is temperature in reservoirs. This relation
shows us what variations of thermal noise should be subtracted from
current noise to define shot noise at finite temperatures in experiments.
Our framework gives a prospective way to study shot noise at finite
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temperatures: Sh in eq.(5.9) is directly calculated, and its prediction
is examined through S − 4kBTG in experiments. In the following the
approach is applied to edge states.

5.4 Results and discussions

In this section, we discuss shot noise and fano factor at finite temperature.
When we show the graphs for specific parameters, we are taking an unit
of |tB|2/v2

F = 1.

5.4.1 Current and Current Noise

Conventionally information on a fractional charge is extracted from Pois-
son noise. Thus, when the quasi-particle weakly transmits through the
QPC, it is sufficient to calculate these transport quantities up to the lowest
order O(t2

B). These expressions can be rewritten into Landauer forms:

IB = e∗
∫

dω
2π

T(ω)( fL − fR), (5.11)

S = e∗2
∫

dω
π

T(ω)( fL(1 − fL) + fR(1 − fR))

+ e∗2
∫

dω
π

T(ω)( fL − fR)2. (5.12)

The transmission probability is characterized by the t-matrix t(ω) ≡
πtBρ(ω):

T (ω) ≡ t∗ (ω − ω0/2) t (ω + ω0/2) ,

ρ(ω) =
tB

vF
cosh

(
βω

2

)(
2π
βvF

)ν−1 |Γ
(
ν
2 + iβω2π

)
|2

πΓ(ν)
. (5.13)

Hereρ(ω) ≡ −ImGr (ω) /π is the density of states (DOS) at x = 0 and Gr(ω)
is retarded Green’s function at x = 0. Figure 5.2 shows theω-dependence
of transmission probability for ν = 1, 1/3, 1/5 for V = 1, 2. In the ν = 1
IQH state or non-interacting edge states, T(ω) in eq.(5.13) leads to a
constant |tB|2/v2

F and remains unchanged when a bias voltage is tuned.
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Figure 5.2: Energy dependence of density of states ρ(ω) for ν = 1, 1/3, 1/5
and β = 1.

When electrons are non-interacting (ν = 1), the density of states are
constant. However, when Coulomb interactions are turned on (ν = 1/3),
T(ω) has double peaks at chemical potentials: ω = ±ω0/2 = ±e∗V/2.

In the ν = 1 IQH state or non-interacting edge states, T(ω) in eq.(5.13)
leads to a constant |tB|2. Within our approximation, only the transmission
probability is renormalized by Coulomb interaction through the DOS. In
contrast the Fermi distribution function is unrenormalized as

fL,R ≡
1

1 + exp(β(ω ± ω0/2))
. (5.14)

5.4.2 Fano factor and peak structure

Seemingly, the second line in eq.(5.12) might be interpreted as shot noise
in view of a Landauer-formula sense. However, shot noise formula in
eq.(5.9) modifies the naive prediction. Following the same approxima-
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tion, eq.(5.9) can be calculated, and rewritten into a Landauer-like form:

Sh = SL + δSL, (5.15)

SL = e∗2
∫

dω
π

T(ω)( fL − fR)2,

δSL = e∗2
∫

dω
π

T(ω)( fL − fR)(yL − yR), (5.16)

where SL represents a Landauer-type shot noise and δSL does the correc-
tion term. Here,

y(ω) ≡ 1
2

tanh
(
βω

2

)
− 1
π

Im
[
Ψ

(
ν
2
+ i
βω

2π

)]
,

yL,R ≡ y (ω ± ω0/2) , (5.17)

where Ψ(z) is the digamma function. In case of ν = 1, because δSL = 0
and T(ω) = |tB|2/v2

F, it is exemplified that Sh is equivalent to the Landauer-
type shot noise SL for ν = 1 at finite temperatures. Thus the correction
term δSL plays an essential role in FQH states.

Let us discuss the feature in view of the nonequilibrium Kubo for-
mula. G = ∂VIB is calculated using eq.(5.11), and then the resulting G and
S are substituted into S− 4kBTG. Therefore, we confirm that the result is
identical with Sh in eq.(5.15), so that the nonequilibrium Kubo formula
eq.(5.10) is satisfied. In the context it is found that δSL corresponds to
the V-derivative of T(ω). As shown in Fig.5.2, T(ω) depends on V.

To proceed a further discussion, we introduce the following Fano
factor:

Fν ≡
Sh

2e∗IB
. (5.18)

The different point compared to a standard Fano factor is to be normal-
ized by an unit charge e∗. In the low-temperature/high-bias limit, Sh/2IB

converges to e∗, as discussed later. With the normalization factor at zero
temperature, it enables us to focus on thermal fluctuation of shot noise.
Here in Fig.5.3 Fν for ν = 1/3 at a fixed inverse temperature β = 1 is
compared to FLν and δFLν defined by
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Figure 5.3: Bias dependence of Fν (solid line), FLν (dashed line) and δFLν

(dashed-dotted line) for ν = 1/3 at β = 1

FLν ≡
SL

2e∗IB
, (5.19)

δFLν ≡
δSL

2e∗IB
. (5.20)

FLν monotonously changes, on the other hand δFLν exhibits non-monotonous
behavior with increasing bias voltage V. The total Fano factor Fν which is
the sum of them converges to 1 in the high-bias limit. The fact represents
that the charge of the quasiparticle is e∗ because Fν is normalized by the
unit charge. In contrast, we find the peak structure at a finite bias which
originates from the correction noise δFLν.

If we regard the Fano factor as an effective charge function, it turns out
that the enhancement from the unit charge occurs. Transmitted quasi-
particles are seemed to tend to come together due to thermal fluctuation.
The peak structure is a sign for carried charges to bunch induced by
thermal fluctuation. Therefore we call the effect ”thermal bunching”.
Note that this ”thermal bunching” is different from the bunching which
originates from statistics of quasi-particles [95].

Fig.5.4(a) shows Fν at a fixed ν = 1/3 for several inverse temperatures
β. As lowering temperature, a peak position moves to a lower bias. What
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Figure 5.4: (a) Fν for β = 0.5, 1.0, 2.0 at ν = 1/3 (solid line, dashed line,
dash-dotted line); (b) Fν for ν = 1, 1/3, 1/5, 1/7 at β = 1 (solid line, dashed
line, dash-dotted line, dotted line)

is universal nature is that the peak height is unchanged. On the other
hand in Fig.5.4(b) Fν at a fixed β = 1 is drawn for some parameters ν.
The peak structure does not appear in the ν = 1 IQH state. The peak
height becomes larger for smaller ν, namely, stronger magnetic field or
Coulomb interaction. Figure 5.5(a) shows filling factor dependence of
the peak height. We find that the peak height diverges in the limit of
ν→ 0 as,

lim
ν→+0

Fν|max →
1
πν
, (5.21)

and the right hand side approximates well even with finite fillings. Fig-
ure 5.5(b) shows filling factor dependence of the peak position y ≡ 1

2π
e∗V
kBT .

As easily seen, the peak position is equal to the filling factor in the limit
of ν→ 0.

Up to now, our discussion has been restricted to Laughlin states
with ν = 1/(2n + 1). As said in the introduction, we would like to
consider statistics for ν = 1/5, 2/5. Here thus we extend our discussion
into hierarchical FQH states (ex.ν = 2/5, 3/7, 2/9, · · · ). Those states are
characterized by filling fraction, unit charge and statistical angle:

ν =
p

2np + 1
e∗ = e

1
2np + 1

θ = π
2n(p − 1) + 1

2np + 1
(5.22)
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shows y = ν.

which are originally defined through the K-matrix [131, 132] and n and
p are positive integer. Our formalism developed above is described by
the quasi-particle Green function at x = 0. This treatment can be also
justified when multiple tunneling processes can be neglected (discuss
later). Thus the extension changes the exponent ν to α in eq.(5.29):

α =
1

p(2np + 1)
. (5.23)

Furthermore, the current eq.(5.11), current noise eq.(5.12) and shot
noise eq.(5.15) have been expressed as a frequency-integral form, in
accordance with the concept of Landauer formula. Concerning the cur-
rent and current noise, integrated results were derived for Laughlin
states[72]. According to the same idea, shot noise can be also calculated.
The result is straightforwardly extended into hierarchical FQH states,
and thus the Fano factor is governed by a scaling function:

Fα =
2
π

Im
[
Ψ

(
α + i

1
2π

(
e∗V
kBT

))]
. (5.24)

This function is characterized by exponent α.
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Figure 5.6: Contour plot of differential Fano factor ∂VFα=-1.0,-
0.5,0,0.5,1.0. The thick line shows ∂VFα = 0.

Taking advantage of the scaling form, let us reexamine the peak
structure of the Fano factor. We plot ∂VFα taking α as a continuous
parameter(Fig.5.6). It is found that α < 1/2 is the sufficient condition for
emergence of peak. It is easily shown that α = 1/p(2np + 1) is less than
1/2, and thus the peak structure develops in all type of hierarchical FQH
states represented by Eq.(5.22).

5.4.3 Discussion

As an experimentally relevant case, let us discuss statistics in FQH states
with ν = 1/5, 2/5. The quantities listed in eq.(5.22) are specifically
obtained for these states:

ν = 1/5 e∗1/5 = e/5 θ1/5 = π/5 (n, p) = (2, 1)
ν = 2/5 e∗2/5 = e/5 θ2/5 = 3π/5 (n, p) = (1, 2)

As mentioned in the introduction, e∗1/5 = e∗2/5 = e/5 has been confirmed
through shot noise measurement in the low-temperature limit[120]. How-
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ever, there still remain the problem on statistics.
To address the issue we begin with generic relations among e∗,θ,ν

and α in eqs.(5.22) and (5.23). Each of e∗,θ,ν and α is determined by two
integer parameters: n and p. Thus the independent quantities become
two of them, and others are given by them. Therefore the statistical angle
discussed here is represented in all type of hierarchical FQH states as

θ = π
[
1 − α

( e
e∗
− 1
)]
. (5.25)

The result yields one-on-one relations between α and θ using e∗1/5 = e∗2/5 =
e/5:

α1/5 =
1
4

(
1 − θ1/5

π

)
, α2/5 =

1
4

(
1 − θ2/5

π

)
. (5.26)

In conclusion, in order to see the difference of statistical angles there is a
way to discuss exponents α.

We substitute α1/5, α2/5 in eq.(5.26) into eq.(5.24) for ν = 1/5, 2/5
respectively, and show the Fano factors for ν = 1/5, 2/5 in Fig.(5.7). In the
low-temperature/high-bias limit, both Fano factors converge to 1. This is
a generic feature of the Fano factor normalized by unit charge e∗. In the
present case for ν = 1/5, 2/5, even if the normalization by e is considered,
the limiting values are equal: e∗1/5/e = e∗2/5/e = 1/5. It turns out that shot
noise in the low-temperature/high-bias limit cannot distinguish statistics.
What is striking is that the Fano factors of ν = 1/5, 2/5 have difference
at finite temperature/bias. The Fano factor is determined by observable
quantities thruogh eq.(5.10) and (5.18). Analyzing its Fano factor, it is
possible to distinguish statistics of θ1/5 and θ2/5 in experiments.

The estimation of exponent α has been already reported by analyz-
ing the power-law dependence of tunneling current: I ∝ Vα[21]. Our
approach makes it possible to obtain both α and e∗ in the shot noise mea-
surement with the scaling function which does not contain non-universal
parameters eq.(5.24) .

In this study, we discuss Fano factor defined by shot noise. It is
difficult to subtract thermal noise at finite temperature appropriately.
Then, there is a naive question, ”Why we need non-equilibrium noise?
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Figure 5.7: Fano factors of ν = 1/5 (Laughlin state) and ν = 2/5 (hierar-
chical FQH state). Both quasi-particles have the same fractional charge
e/5.

Isn’t the current noise power S sufficient?” To clarify this, a Fano factor
defined as a ratio between total current noise S and backscattering current
IB is,

S
2e∗IB

= coth(ω0β/2), (5.27)

and it does not include α. A subtle additional problem with this ratio is
diverging at V → 0 limit. Our shot noise does not diverge for any bias
voltages.

Finally we comment on a closely-related work by Ferarro et al.[133].
They pointed out that the tunneling is dominated by multiple particles
at T < T∗, in contrast the single particle at T > T∗. The dynamics of
neutral edge mode determines the crossover temperature T∗, evaluated
as 50mK in the experiment[134]. Thus our treatment, which has focused
on the single-particle process, still stands in the region of T > T∗.
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5.5 Summary

In summary the finite-temperature shot noise at FQH edge states has
been studied on the basis of the nonequilibrium Kubo formula. The
peak structure of Fano factor has been found at a bias voltage. We have
named the phenomena ”thermal bunching” because this is a sign for
quasi-particles to weakly glue, mediated by thermal fluctuation. The
phenomena has been determined by a scaling function characterized by
an exponent of quasi-particle Green function. In ν = 1/5, 2/5 FQH states,
exponents have been given by only statistical angles. Detecting the
discrepancy of Fano factors, one can measure the difference of statistics.
Finally we have proposed an indirect way to determine a statistical angle
from exponent fitted to the scaling function and unit charge estimated
at sufficiently low temperature within T > T∗

Appendix 5.A Keldysh Green’s function

The quasi-particle Green’s function is defined by

Gη1η2
R,L (x, t) ≡ −i

〈
TKψR,L(x, tη1)ψ†R,L(0, 0η2)

〉
. (5.28)

Under the Hamiltonian(Eq. 5.1), this correlations can be calculated. The
greater and lesser part of Green function are

G±∓R,L(x, t) =
±i
2π

(
i π
βvF

sinh π
βvF

(−x + tvF ± iϵ)

)ν

, (5.29)

where ϵ is an infinitesimal positive number where η1, η2 = ± represents
a branch of the Keldysh contour. We also define G±∓R,L(t) ≡ G±∓R,L(0, t) to
simplify.

These Green’s functions satisfy symmetry-like relations,

Gη,η̄
r (−x,−t) = −Gη̄,η

r (x, t), (5.30)

Gη1,η̄
r (−x,−t) = Gη,η̄

−r (x, t), (5.31)

Gη,η̄
r (x, t) = Gη,η̄

−r (x,−t). (5.32)
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These relations are alike to ”particle-hole symmetry”, ”parity symmetry”
and ”time reversal” respectively.

We also define Fourier transformation

G(ω) =
∫

dtG(t)eiωt. (5.33)

Appendix 5.B Calcultion of Current and Cur-
rent Noise Power

In this appendix, we represent backscattering current IB and current
noise power S by Green’s functions. These quantity can be written by

IB =
1
2

∑
η1

〈
TK

{
ÎB(tη1) exp

(
−i
∫

K
dτ1HB(τ1)

)}〉
, (5.34)

S(t, t1) =
〈
ÎB(t)ÎB(t1)

〉
+
〈
ÎB(t1)ÎB(t)

〉
− 2
〈
ÎB(t)

〉 〈
ÎB(t1)

〉
, (5.35)

=
∑
η1

〈
TK

{
ÎB(tη1)ÎB(tη̄1

1 ) exp
(
−i
∫

K
dτ1HB(τ1)

)}〉
(5.36)

S = S(ω = 0), (5.37)

where η̄ ≡ −η. We expand these quantity in tB to second order. The
backscattering current is

IB

e∗|tB|2/2
=
∑
η1η2ϵϵ1

ϵη2

∫
dt1eiϵω0t+iϵ1ω0t1

〈
TK

{[
ψ†R(tη1)ψL(tη1)

]ϵ [
ψ†R(tη2

1 )ψL(tη2
1 )
]ϵ1
}〉

,

(5.38)

where η1, η2 are indices of Keldysh contour(±), ϵ, ϵ1 = ± and[
ψ†R(tη1)ψL(tη1)

]+ ≡ ψ†R(tη1)ψL(tη1) (5.39)[
ψ†R(tη1)ψL(tη1)

]− ≡ ψ†L(tη1)ψR(tη1). (5.40)

Using Wick’s theorem, we take apart these correlations into products
of Green’s functions. Terms such as

〈
ψLψL

〉
and

〈
ψ†Lψ

†
L

〉
vanishes, so

ϵ = −ϵ1. Resulting Green’s functions only depend on t − t1, so we shall
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rewrite t − t1 into t.

IB

e∗|tB|2/2
=
∑
η1η2

η2

∫
dt
{

eiωtGη2η1
R (−t)Gη1η2

L (t) − e−iωtGη1η2
R (t)Gη2η1

L (−t)
}
,

(5.41)

=
∑
η1η2

∫
dt(η2 − η1)eiω0tGη2η1

R (−t)Gη1η2
L (t). (5.42)

In the last line, we change t to −t and replace η1 and η2 of the last term.
With help of Eq.5.31, we obtain

IB

e∗|tB|2
=
∑
η1

∫
dteiω0tη1

[
Gη̄1η1

R (−t)
]2
. (5.43)

Similarly, the current noise power S can be represented by Green’s func-
tions as

S(t)
e∗2|tB|2

= −
∑
η1

2 cos(ω0t)
[
Gη̄1η1

R (−t)
]2
, (5.44)

S
e∗2|tB|2

=
S(ω)

e∗2|tB|2
∣∣∣∣
ω→0

, (5.45)

= −2
∑
η1

∫
dt cos(ω0t)

[
Gη̄1η1

R (−t)
]2
. (5.46)

These integrals can be performed by replacing t′ = t ∓ iϵ ± β/2 [72].
The results are

IB

e∗|tB|2
=

1
π2v2ν

F

(
2π
β

)2ν−1

sinh
(
ω0β

2

) ∣∣∣∣Γ(ν + i
ω0β

2π

)∣∣∣∣2 (5.47)

S(ω)
e∗2|tB|2

=
2

π2v2ν
F

(
2π
β

)2ν−1

cosh
(
ω0β

2

) ∣∣∣∣Γ(ν + i
ω0β

2π

)∣∣∣∣2 . (5.48)

Fourier transformation of the lasser and greater Green’s functions are
obtained by the same path-integral and we obtain a relation

Gηη̄(ω) = ηi f η(ω)ρ(ω). (5.49)

Using this relation, we can rewrite Eqs.5.43 and 5.46 into Landauer-like
form in Eqs.5.11 and 5.12 by straightforward calculation.
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Appendix 5.C Calculation of Shot Noise from
Eq.(5.9)

Shot noise defined by non-equilibrium Kubo formula can be calculated
from Sh = S − 4kBTG. However, if we calculate Sh from Eq.(5.9), we
should care a treatment for δN(t). Shot noise is defined by Eq.5.9 and
can be written by

IB = −2
∑
η1

〈
TK

{
δÎB(tη1)δQ(tη̄1) exp

(
−i
∫

K
dτ1HB(τ1)

)}〉
, (5.50)

N(t) =
1
2

∫
dx
(
N[ψ†R(x, t)ψR(x, t) − ψ†L(x, t)ψL(x, t)]

)
, (5.51)

where N means normal order. We represent Sh by Green’s function,
however, scrupulous care should be taken in handling δQ because of the
normalization. When applying Wick’s theorem, correlations which in-
cludes normal ordered terms should be normalized by operator product
expansion such as,〈

N[ψ†R(x, tη̄1)ψR(x, tη̄1)]ψ†R(0, tη1)ψR(t, tη2
1 )
〉

(5.52)

=
−1
2π
〈
TK∂xϕR(x, tη̄1)ψ†R(0, tη1)ψR(t, tη2

1 )
〉

(5.53)

= −(Gη̄1η2
R0 (x, t − t1) − Gη̄1η1

R0 (x, 0))Gη2η1
R0 (0, t1 − t), (5.54)

where Gr0 is non-interacting Green’s function and in the last line we
apply operator product expansion. Thus Sh can be written as

Sh

e∗2|tB|2
= i
∑
η1η2

τη2η2
z

∫
dxdt2 cos(ω0t)Gη1η2(t)Gη2η1(−t)

×
∑

r

(
Gη̄1η2

r0 (x, t) − Gη̄1η1
r0 (x, 0)

)
. (5.55)

Integration of Gη̄1η2
r0 (x, t) − Gη̄1η1

r0 (x, 0) respect to x works as a kernel for
integral respect to t. When performing integral respect to t, singularities
are relevant, however, above expression is not suitable for extract the
singularities. In order to treat the singularities properly, we replace the
x depending terms as

Gη̄1η2
r0 (x, t) − Gη̄1η1

r (x, 0)→ −Gη̄1η1
r0 (x, 0)Gη2η̄1

r0 (−x,−t)Gη2η1
r (0,−t), (5.56)
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where Gr is an pointer of singularities and equal to inverse of Gr0 near
the singularities. To proceed calculation, we use next relations (as shown
later),

∫
dxGη̄η

r0 (x, 0)Gηη̄
r0 (−x, t) =


vFt
β G−+R0 (0,−t) (r = R)

vFt
β G+−R0 (0,−t) (r = L)

(5.57)

∫
dxGη̄η

r0 (x, 0)Gη̄η̄
r0 (−x, t) =


vFt
β G−+R0 (0,−t) − θ(t)iηGη̄η

R0(0,−t) (r = R)
vFt
β G+−R0 (0,−t) − θ(−t)iηGη̄η

R0(0,−t) (r = L)

(5.58)

First, we consider a case of η1 = η2 = η. Using Eqs.(5.57,5.57),∑
r

∫
dxGη̄η

r0 (x, 0)Gηη̄
r0 (−x,−t)Gηηr0 (0,−t)

=
vFt
β

(G−+R0 (0,−t) + G+−R0 (0,−t))×

(θ(−ηt) sinh
π
β

(t + iηϵ) + θ(ηt) sinh
π
β

(t − iηϵ)),

=
vFt
β

[
θ(−ηt)

{
t + iηϵ
t + iϵ

+
t + iηϵ
t − iϵ

}
+ θ(ηt)

{
t − iηϵ
t + iϵ

+
t − iηϵ
t − iϵ

}]
=

2vFt
β

(5.59)

In these transformations, we picked up singular parts near τ = 0 which
survive when we integrate respect to t and used a relation,

x + iη2ϵ

x + iη1ϵ
→ 1 +

η2 − η1

2
2πixδ(x). (5.60)

Next, we see a case of −η1 = η2 = η. In the same way in Eq.(5.59), using
Eqs.(5.58), we obtain∑

r

∫
dxGη̄η

r0 (x, 0)Gη̄η̄
r0 (−x,−t)Gηηr0 (0,−t) =

2vFt
β
− iη (5.61)

Eq.(5.55) can be calculated by using Eqs.(5.56,5.59) and (5.61). As easily
seen, the part of η1 = η2 = η (Eq.5.59) vanishes, because the integrand is
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odd in τ. Only the part of −η1 = η2 = η (Eq.) survives and we obtain
Sh

e∗2|tB|2
= i
∫

dt2 cosω0t
−2t
β

∑
η

η
(
Gηη̄(0, t)

)2 −
∫

dt2 cosω0t
∑
η

η
(
Gηη̄(0, t)

)2

=
S

e∗2|tB|2
− 4
βe∗

∂
∂V

IB

e∗|tB|2
, (5.62)

here we used

t cosω0t =
∂
∂ω0

sinω0t =
∂

e∗∂V
sinω0t. (5.63)

Eq. (5.62) reproduces non-equilibrium Kubo formula Sh = S − 4kBTG.
We prove Eqs.(5.57,5.58). First, we prove of Eq.(5.57). We show the

prove only for r = R. The left hand side of Eq.(5.57) is∫
dxGη̄η

R0(x, 0)Gηη̄
R0(−x,−t) =

∫
dx
−1

(2π)2 gη(x)gη(x − vFt), (5.64)

where gη(x) is

gη(x) ≡
π
β

sinh π
β (x + iηϵ)

. (5.65)

We define the Fourier transformation of g as

gη(k) =
1

2π

∫
dxeikxgη(x) (5.66)

= −ηi f (ηk), (5.67)

f (k) =
1

1 + eβk . (5.68)

We substitute Eq.(5.66) to Eq.(5.64).∫
dxGη̄η

R0(x, 0)Gηη̄
R0(−x,−t)

=

∫
dk
2π

f (ηk) f (−ηk)e−ikvFt (5.69)

=
−1
2πβ

∫
dk f ′(k)e−ikvFt (5.70)

=
−1
2πβ

{[
f (k)e−ikvFt

]
−
∫

dk f (k)(−ivFt)e−ikvFt
}

(5.71)

=
vFt
β

∫
dk
2π

(−i f (k))e−ikvFt (5.72)

=
vFt
β

G−+R (0. − t). (5.73)
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In Eq.(5.70), we use f (ηk) f (−ηk) = − f ′(k)/β.
Next, we prove Eq.(5.58). The left hand side of Eq.(5.58) is∫

dxGη̄η
R0(x, 0)Gη̄η̄

R0(−x,−t) = θ(−τ)
∫

dx
−1

(2π)2 gη(x)gη(x − vFt)

+ θ(τ)
∫

dx
−1

(2π)2 g−η(x)g−η(x − vFt). (5.74)

The first term of the right hand side is equal to θ(−t)×Eq.(5.57) and the
second term is

− θ(t)
∫

dk
2π

f (ηk)2e−ikvFt (5.75)

= −ηiθ(t)
∫

dk
2π

(−ηi f (ηk))e−ikvFt − θ(t)
2πβ

∫
dk f ′(k)e−ikvFt (5.76)

= −ηiθ(t)Gη̄η
R (0,−t) + θ(t)

vFt
β

G−+R (0,−t) (5.77)

In Eq.(5.76), we use a relation f (ηk)2 = f (ηk)+ f ′(k)/β. Thus we substitute
the Eq.(5.77) to Eq.(5.74) and obtain∫

dxGη̄η
R0(x, 0)Gη̄η̄

R0(−x,−t) =
vFt
β

G−+(0,−t) − ηiθ(t)Gη̄η
R (0,−t). (5.78)



Chapter 6

Summary

In this thesis, we have theoretically investigated three subjects related to
the Hong-Ou-Mandel-type experiment to characterize statistics of mo-
bile particles. We summarize the results obtained in this thesis as well
as problems left for a future study.

In Chap. 3, we have studied dephasing effect on single photon gener-
ator made in the semiconductor cavity QED [23]. By employing a simple
model with one-dimensional bosonic channel, we have obtained analyt-
ical results for quantum nature of photons emitted from single-photon
generator. For realistic experimental parameters, we have evaluated sur-
vival probabilities, spectra, and purities as a function of various param-
eters, and have discussed optimal condition for generation of coherent
single photons. Preliminary results on improvement of purities by time
filtering have also shown. Detailed discussion on effect of various filter-
ing technique, which is useful for realization of excellent single-photon
emission for quantum information, is an important future problem. The
theoretical treatment of the non-Markovian noise such as 1/ f noise is also
a important problem left for future study to describe superconducting
cavity QED systems.

In Chap. 4, we have studied a fermionic analogy of single-photon
generation, i.e., single-electron generation into an integer quantum Hall
edge state. We have considered dephasing due to level fluctuation and
Coulomb interaction between an electron in a quantum dot and elec-
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trons in a edge state. In particular for the latter effect, we have derived
field-theoretical method to approach this problem including nontriv-
ial Fermi-surface effects such as Anderson orthogonality theorem and
the Fermi-edge singularity. We have calculated survival probabilities,
spectra, and purities, and have discussed how environment noise and
Coulomb interaction with electrons in an edge channel degrades quan-
tum coherence of electrons. For further description in actual single
electron generation, finite-temperature effect, coexistence of noise and
Coulomb interaction, and dephasing effect on several theoretical pro-
posals for quantum information processing should be studied in more
detail, and are left for a future problem.

In Chap. 5, we have studied current and current noise at finite tem-
peratures under weak reflection between two fractional quantum Hall
edge states [24]. We have defined an (extended) Fano factor at finite tem-
peratures, and have calculated it for dominant channel of backscattering
channel at moderate temperatures for which neutral modes are irrele-
vant. We have demonstrate that this extended Fano factor is useful to
determine a statistical angle, which characterizes the exchange relation
between two fractional charge excitations. Extension of this discussion
toward non-Abelian statistics followed by quasi-particles of ν = 5/2
fractional quantum Hall states is an important future problem.
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Lidong Zhang, E. Hu, A. Imamoğlu, Science 290, 2282 (2000).

[34] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, Phys.
Rev. Lett. 86, 1502 (2001).

[35] G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86,
3903 (2001).

[36] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V.
Thierry-Mieg, App. Phys. Lett. 79, 2865 (2001).

[37] M. Pelton, C. Santori, J. Vuc˘ković, , B. Zhang, G. S. Solomon, J.
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