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Many-body effects and non-equilibrium properties in heat transport via a nano-
scale object have attracted much interest for a few decades. A number of theoretical
works have clarified that there appear various kinds of transport processes despite
the simpleness of the target system. Recent development in experimental techniques
for measurement and sample fabrication has now enabled us to access information
of heat current flowing via a nano-scale circuit. In near future, experimental studies
on heat transport via a two-state system (a qubit) will be possible.

In this thesis, we systematically investigate heat transport via a two-state system,
using the spin-boson system near thermal equilibrium. We derive several analytical
formulas for the thermal conductance within the linear response theory. We also per-
form an accurate numerical simulation with the quantum Monte Carlo method and
confirm these predictions for arbitrary types of thermal baths. The present numer-
ical calculation classifies transport mechanism and shows that the noninteracting-
blip approximation quantitatively describes thermal conductance in the incoherent
transport regime.

In addition, we study quantum critical behavior in heat transport via a two-state
system with sub-Ohmic reservoirs theoretically. We calculate temperature depen-
dence of thermal conductance near quantum phase transition and discuss its critical
exponents. We also propose superconducting circuits to realize the sub-Ohmic spin-
boson model, which can be used for observation of quantum critical phenomena.

This is a version uploaded to the public web. To avoid the problem of copyrights,
the figures taken from previous studies are omitted.
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Chapter 1

Introduction

In this chapter, we summarize the background of this thesis. After we discuss simi-
larities between heat transport and electronic transport in Section 1.1, we introduce
the spin-boson model as a minimal model for describing heat transport via a nano-
scale object in Section 1.2. We review existing theoretical and experimental stud-
ies on heat transport via a nano-scale object in Section 1.3 and Section 1.4, respec-
tively. We also summarize theoretical studies on quantum phase transition in the
sub-Ohmic spin-boson model in Section 1.5. Based on these previous studies, we
describe the purpose of this thesis in Section 1.6. Finally, we give the organization of
this thesis in Section 1.7.

In this chapter, we give just a brief summary and detailed descriptions of analyt-
ical results are given in the subsequent chapters. Throughout this thesis, we employ
the unit of h̄ = 1.

1.1 Electronic transport vs. Heat transport

In macroscopic scale, it is known that electronic transport is well described by the
Ohm’s law, which states the charge current is proportional to the negative gradient
in the electronic potential, where the linear coefficient is the conductivity. The cor-
responding macroscopic law in heat transport is the Fourier’s law, which states that
the time rate of the heat current density j through a material is proportional to the
negative gradient in the temperature T:

j = −κ∇T, (1.1)

where κ is the thermal conductivity.
For quantum transport via nano-scale objects such as quantum point contact,

quantum wires, and quantum dots, electronic transport is described by the Landauer
formula [1] based on the scattering theory. This formula predicts quantum transport
phenomena, e.g., the quantization of the electronic conductance [2]. It is remarkable
that there exists the corresponding formula for heat transport, that is the Landauer-
like formula for photons (or phonons) [3]:

J =
1

2π

∫ ∞

0
dω ωT (ω) [nL(ω)− nR(ω)] , (1.2)

where T (ω) is the transmission probability of photons (or phonons) and nν(ω) is the
Bose-Einstein distribution function in the reservoir ν. Then, the quantized thermal
conductance is predicted from Eq. (1.2) as in electronic transport and has indeed
been observed in heat transport through one-dimensional wires [4].
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TABLE 1.1: Electronic transport vs. heat transport
.

Electronic Transport Heat Transport
Macroscopic law Ohm’s law Fourier’s law (1.1)
Microscopic law Landauer’s formula Photon (or phonon) version of

Landauer formula (1.2)
Nano-scale object Quantum dot Two-state system (a qubit)
Quantum phase Multi-channel Kondo model Sub-Ohmic spin-boson model
transition

As indicated by these two examples, there exist strong similarities between elec-
tronic transport and heat transport (see Table 1.1). It is meaningful to consider coun-
terparts of electronic transport phenomena in heat transport. Electronic transport
via a quantum dot has been attracting considerable attention because the system ex-
hibits various intriguing phenomena, e.g., the Kondo effect [5]. It is quite natural
to ask what happens if one considers heat transport via a zero-dimensional system.
Indeed, as a counterpart of electronic transport via quantum dots, we can consider
heat transport via a two-state system (or a qubit). This system is described by the
spin-boson model (see the next section) and is proved to be related to the Kondo
model [6], which exhibits the Kondo effect. Recently, a number of theoretical stud-
ies on heat transport via nano-scale objects including two-state systems have shown
that various transport phenomena can occur in this system (see Section 1.3). Heat
transport via a zero-dimensional system is also important in designing thermal de-
vices such as thermal rectification [7] and thermal transistors [8].

Realizing quantum critical phenomena (QCP) near quantum phase transition in
a controlled way is one of the central topics in condensed matter physics. Recently,
QCP have been studied for the multi-channel Kondo effect realized in artificial nano-
structures [9, 10, 11], and quantum critical behavior has been observed via electronic
transport properties in good agreement with theories [12, 13]. It is possible to con-
sider even its counterpart in heat transport. The spin-boson model with sub-Ohmic
reservoirs is known to display quantum phase transition at zero temperature when
a system-reservoir is tuned at a critical value (for details, see Section 1.5). Heat trans-
port via a two-state system coupled to the sub-Ohmic reservoirs has, however, not
been discussed in previous works.

While the similarities between electronic and heat transport via a nano-scale ob-
ject have been discussed for a few decades, it was generally difficult to study the cor-
responding heat transport experimentally since high-accuracy calorimetry for nano-
scale devices was challenging. Recent development of experimental technology has,
however, changed the experimental situation greatly. For example, measurement of
heat current via a harmonic oscillator (a circuit resonator) and its control by an ex-
ternal bias voltage have been realized quite recently [14] (for details, see Section 1.4).
We expect that experimental studies on heat transport via nano-scale objects will be
accelerated in near future.

1.2 Spin-boson model

We consider the spin-boson model as a minimum model describing heat transport
via nano-scale objects. Despite simpleness of the model, it exhibits fruitful funda-
mental physics such as the Kondo effect and quantum phase transition. In this sec-
tion, we introduce the spin-boson model and discuss its properties briefly.
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FIGURE 1.1: Schematics of the spin-boson model composed of a two-
state system and two thermal reservoirs.

A two-state system coupled to thermal reservoirs is called as the ‘spin-boson
system’ (see Fig. 1.1). The Hamiltonian is composed of three parts

H = HS + ∑
ν=L,R

HB,ν + ∑
ν=L,R

HI,ν, (1.3)

where HS, HB,ν, and HI,ν describe a two-state system, a bosonic thermal reservoir ν,
and a coupling between the two-state system and the reservoir ν, respectively. Each
term of the Hamiltonian is given by as follows:

HS = −∆
2

σx − ϵσz, (1.4)

HB,ν = ∑
k

ων,kb†
ν,kbν,k, (1.5)

HI,ν = −σz

2 ∑
k

λν,k

(
bν,k + b†

ν,k

)
, (1.6)

where σα (α = x, y, z) is the Pauli matrix and bν,k (b†
ν,k) is the annihilation (creation)

operator of bosonic excitation with the wavenumber k in the reservoir ν. The param-
eters, ∆, ϵ, ων,k, and λν,k, denote the tunneling amplitude, the detuning energy, the
energy dispersion of bosonic excitation, and the system-reservoir coupling strength,
respectively. In the spin-boson model, the properties of the reservoirs are character-
ized by the spectral density:

Iν(ω) ≡ ∑
k

λ2
ν,kδ(ω − ων,k). (1.7)

Assuming that the number of modes is so large to form a continuous spectrum, the
spectral density becomes a smooth function of ω, and is usually taken as [15, 6]

Iν(ω) = αν Ĩ(ω), (1.8)

Ĩ(ω) = 2ω

(
ω

ωc

)s−1

e−ω/ωc , (1.9)

where αν is the dimensionless coupling strength between the two-state system and
the reservoir ν. We introduced the exponential cutoff function e−ω/ωc , where the
high-frequency cutoff frequency ωc is assumed to be considerably larger than other
characteristic frequencies, e.g., ∆, ϵ, and kBT. The exponent s of the spectral den-
sity is crucial for determining the properties of the reservoirs. The case s = 1 is
called ‘Ohmic,’ whereas the cases s > 1 and s < 1 are called ‘super-Ohmic’ and
‘sub-Ohmic,’ respectively. Note that effect of high-frequency modes (ω ≳ ωc) is
renormalized into the tunneling amplitude ∆.
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FIGURE 1.2: Schematics of (a) a superconducting transmission-line
resonator with a flux qubit and (b) a molecular junction.

The spin-boson model has been used in theoretical studies on decoherence phe-
nomena due to the environments [15, 6]. Recently, this model has been used also
for the study of heat transport due to phonons or photons via a nano-scale object.
By coupling the two-state system to the two reservoirs with different temperatures
(TL > TR), the heat current flows from one reservoir to the other one (see Fig. 1.1).
Since the spin-boson model is a simple model for describing heat transport, it has
been used for a variety of systems, e.g., superconducting circuits [16, 17, 18], pho-
tonic waveguides with local two-state systems [19], and molecular junctions [20, 21]
(see Fig. 1.2).

In the following sections, we briefly review existing theoretical and experimental
studies on heat transport via a two-state system using the spin-boson system. The
explicit expression of the heat current in this model will be given in Chapter 2.

1.3 Theories on heat transport via a nano-scale object

1.3.1 Analytical formulas

In a number of theoretical studies, heat transport via a two-state system has been in-
vestigated by analytical methods [7, 22, 23, 24, 25, 26, 27]. In the pioneering work by
Ruokola and Ojanen [23], heat current via a two-state system was calculated using
perturbation calculation with respect to the coupling Hamiltonian HI. This calcula-
tion gives transition rates between the eigenstates of the two-state Hamiltonian, |±⟩.
Solving the stochastic equation, we obtain the heat current as

J = J+ + J−, (1.10)

J± =
π sin4 θ

8

∫ ∞

0
dω ωIL(ω)IR(ω) [nL(ω)− nR(ω)]

×
∣∣∣∣∣ 1
ω − ω0 ± i

2 Γ∓
− 1

ω + ω0 ∓ i
2 Γ∓

∣∣∣∣∣ , (1.11)

where tan θ = ∆/ϵ, ω0 =
√

ϵ2 + ∆2, nν(ω) is the Bose-Einstein distribution function
in reservoir ν, and Γ± is a transition rate out of state |±⟩ calculated by the Fermi’s
golden rule.

At the high-temperatures limit (kBT ∼ ∆), since resonant energy transfer at ω =
ω0 is dominant, the heat current is obtained as

J =
π

2
sin2 θ ω0 IL(ω0)IR(ω0) [nL(ω0)− nR(ω0)]

IL(ω0) [2nL(ω0) + 1] + IL(ω0) [2nL(ω0) + 1]
. (1.12)
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FIGURE 1.3: Schematics of (a) the sequential tunneling and (b) co-
tunneling processes. (c) The left-reservoir temperature dependence
of the total heat current for the symmetric Ohmic case (s = 1, ϵ =
0) with αL = αR = 0.1/π [23]. Right-reservoir temperature is
TR = 0.95TL. The solid line represents the numerical solution of
Eq. (1.11), the green dash-dotted line represents the high-temperature
approximation (1.12), and the blue dashed line represents the low-
temperature approximation (1.13).

This formula indicates a heat transport process induced by boson absorption and
emission (see Fig. 1.3 (a)). This transport process is called the ‘sequential tunneling’.
In contrast, at the low-temperature limit (kBT ≪ ∆), the frequency dependence of
the energy denominators in Eq. (1.11) can be ignored and the excitation of the two-
state system is exponentially suppressed. Then, the expression of the heat current
has been obtained as

J =
π sin4 θ

2ω2
0

∫ ∞

0
dω ωIL(ω)IR(ω) [nL(ω)− nR(ω)] . (1.13)

This expression indicates heat transport via a virtual excitation in the two-state sys-
tem (see Fig. 1.3 (b)). This transport process is called the ‘co-tunneling’.

Roukola and Ojanen have also shown that the crossover between the sequential
tunneling and co-tunneling is quite sharp as shown in Fig. 1.3 (c). This means that
one of the two analytical formulas holds well except for a narrow transition region.
We should note that the heat current (1.13) in the co-tunneling regime obtained by
the perturbative method does not include higher-order processes, which is impor-
tant in the Kondo effect.

There are many other theoretical approaches to treat heat transport via a two-
state system. For weak system-reservoir coupling, one can consider perturbative
calculation for general quantum systems using the quantum master equation [7]
and the nonequilibrium Green’s function method [25]. For strong system-reservoir
coupling, the noninteracting-blip approximation (NIBA) [22, 24] and the polaron-
transformed Redfield equation (PTRE) [26, 27] have been applied. Although these
analytical methods are powerful in analyzing heat transport, the condition for which
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these approximations hold well is non-trivial.

1.3.2 Kondo effect

In the spin-boson model, the many-body effect emerges due to the strong interaction
between the local system and the environments. In particular, it is known that the
symmetric Ohmic spin-boson model (s = 1, ϵ = 0) can be related to the anisotropic
Kondo model [5] using the bosonization technique [6, 15, 28]. The Kondo model de-
scribes a single magnetic impurity with spin 1/2 interacting with conduction elec-
trons. The ground state forms a singlet state between the spin of the impurity and
spins of conduction electrons, which is called the ‘Kondo singlet’. The temperature
at which the Kondo singlet is formed is characterized by the Kondo temperature TK.

The anisotropic Kondo Hamiltonian takes the form

HK = ∑
k,s

ϵkc†
k,sck,s +

J∥
4L

σz ∑
k,k′,s

sc†
k,sck′,s +

J⊥
2L ∑

k,k′

(
σ+c†

k,↓ck′,↑ + σ−c†
k,↑ck′,↓

)
, (1.14)

where ck,s (c†
k,s) is the annihilation (a creation) operator of the conduction electron

with wavenumber k and spin polarization s =↑ or ↓, L is the system size, and
σ± = (σx ± iσy)/2. The J∥-term describes the scattering of the impurity in which
the spin polarization is conserved while the J⊥-term describes spin-flip scattering.
The correspondence of the parameters between the Ohmic spin-boson model and
the anisotropic Kondo model is [6, 15, 28]

∆/ωc = ρJ⊥ cos2
[

arctan
(

πρJ∥
4

)]
, (1.15)

α =

[
1 − 2

π
arctan

(
πρJ∥

4

)]2

, (1.16)

where ρ is the density of states of conduction electrons. In the Ohmic spin-boson
model, the characteristic energy scale (the Kondo temperature) is given by [6, 15, 29]

kBTK =

∆
(

∆
ωc

)α/(1−α)

, (0 < α < 1),

0, (1 ≤ α).
(1.17)

We show the “Kondo temperature” as a function of the system-reservoir coupling α
in Fig. 1.4. As shown Fig. 1.4, at low temperature T < TK, the Kondo-like many-body
state is realized in the spin-boson model.

Saito and Kato have studied the Kondo-like effect in heat transport in the Ohmic
spin-boson model using the quantum Monte Carlo simulation [29]. They have clar-
ified the Kondo signature in the universal temperature dependence of the linear
thermal conductance proportional to T3 at low temperatures (T ≪ TK) (see Fig. 1.5).
They have also shown that at high temperatures the thermal conductance is pro-
portional to T2α−1. While the detailed features of the thermal conductance have
been clarified for the Ohmic spin-boson model, the non-Ohmic case (the sub-Ohmic
and super-Ohmic cases) has not been studied so much. It is a fundamental ques-
tion whether the Kondo-like effect emerges in heat transport in the non-Ohmic spin-
boson model or not.
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FIGURE 1.4: The “Kondo temperature” TK as a function of α. This line
indicates a crossover from the Kondo regime (blue) to the incoherent
tunneling regime (orange). At zero temperature, a quantum phase
transition occurs at α = 1.

FIGURE 1.5: The temperature dependence of the thermal conduc-
tance for various α [29]. The thermal conductance is proportional to
T2α−1 for high temperatures and T3 for low temperatures.

1.4 Experiments on heat transport via a nano-scale object

The recent, rapid development in techniques of heat measurement that has enabled
us to experimentally access the heat current in nano-scale objects is remarkable.
In particular, Ronzani et al. have observed heat transport via resonator-system-
resonator quite recently (see Fig. 1.6 (a)) [14]. They have considered two models:
the quasi-Hamiltonian (QH) model for γ ≃ g and the non-Hamiltonian (NH) model
for γ ≪ g, where γ and g are the reservoir-resonator and resonator-system cou-
plings, respectively. For each model, they have measured the total heating powers
for the different source temperatures with high accuracy as shown in Fig. 1.6 (b) and
(c).

In addition, it has been theoretically proposed that a superconducting qubit cou-
pled to transmission lines realizes the Ohmic spin-boson model [17, 18], and exper-
imentally demonstrated [31, 30]. The experimental setup composed of a supercon-
ducting flux qubit (a two-state system) coupled to transmission lines (reservoirs) is
shown in Fig. 1.7 (a). The flux qubit consists of a superconducting loop interrupted
by three (or more) Josephson junctions [32] (for details, see Section 6.1). Magazzú et

FIGURE 1.6: (a) A circuit representing the experimental setup in
Ref. [14]. A transmon qubit, whose tunneling amplitude can be tun-
able by the external flux Φ, is coupled to two LrCr-resonators and
each resonator is terminated at one end by a mesoscopic normal-
metal resistor which plays the role as the reservoir. The total heating
powers as a function of the external flux Φ in (b) the QH model and
(c) the NH model regimes for different source temperatures TS [14].
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FIGURE 1.7: (a) Experimental setup in Ref. [30]. A coplanar waveg-
uide running across the chip plays the role as the Ohmic reservoir.
The inset is a scanning electron micrograph showing the flux qubit
and the scale bar is 2 µm. (b)-(d) Experimental and theoretical trans-
missions for α = 0.007, 0.21, and 0.8, respectively [30].

al. have experimentally investigated an impact of quantum coherence by the system-
reservoir coupling strength [30]. When the microwave is injected into the transmis-
sion line, the detuning energy is described by

ε(t) = ε0 + εp cos(ωpt), (1.18)

where εp and ωp are the amplitude and frequency of microwave, respectively, and
the static detuning energy ε0 is given as ε0 ∝ Φε − Φ0/2 (Φε: the external flux,
Φ0 = h/2e: flux quantum). When the microwave amplitude is weak, the linear
response theory gives the transmission at the microwave frequency ωp as

T (ωp) = 1 − iNωpχ(ωp), (1.19)

where N is a coupling constant determined by fitting and χ(ω) is the dynamic sus-
ceptibility of the qubit. Fig. 1.7 (b)-(d) show the experimental (the left side) and
theoretical (the right side) transmissions as a function of the static detuning energy
ε0 and the probe frequency ωp for different coupling strengths. The theoretical re-
sults have been calculated in the NIBA [15, 6]. For the weakest coupling strength,
α = 0.007, one can see the high quantum coherence as shown in Fig. 1.7 (b). As
the coupling strength is increased, for α = 0.21, the quantum coherence is reduced,
but the hyperbolic curve characteristic of it can be recognized in Fig. 1.7 (c). How-
ever, for the strongest coupling strength, α = 0.8, the quantum coherence is broken
completely and the transmission is independent of the prove frequency as shown in
Fig. 1.7 (d).

We expect that heat transport via a two-state system will be measured in near fu-
ture by combining the accurate heat measurement technique [14] with the controlled
system-reservoir coupling [30].

1.5 Quantum critical phenomena

One of the intriguing phenomena in the spin-boson model is that, at zero temper-
ature, a quantum phase transition occurs when the coupling strength between the
two-state system and thermal reservoirs is tuned to a critical point αc. For α < αc,
the ground state is described by a coherent superposition of two wavefunctions lo-
calized at each well, and is called a ‘delocalized phase’. For α > αc, the ground-state
becomes two-fold degenerate because the coherent superposition is completely bro-
ken due to the disappearance of quantum tunneling between the two wells. This
phase is called a ‘localized phase’. For the Ohmic case, a Kosterlitz-Thouless-type
phase transition occurs at αc = 1 [6, 33, 34]. The sub-Ohmic case shows a second-
order phase transition [35, 36, 37, 38, 39, 40]. The super-Ohmic case does not have a
distinct phase transition.

In this thesis, we focus on quantum critical phenomena in the sub-Ohmic case.
Fig. 1.8 shows schematic of the population ⟨σz⟩ε as a function of the detuning energy
ϵ near the critical point α = αc. In the delocalized phase (α < αc), the slope at ϵ = 0
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FIGURE 1.8: Population, ⟨σz⟩ε, as a function of the detuning energy,
ϵ near the critical point. For α < αc (blue line), ⟨σz⟩ε is a continuous
function of ϵ, and the static susceptibility, χ0, can be defined by the
slope at ϵ = 0. At the critical point (green line; α = αc), ⟨σz⟩ε is
continuous, but the static susceptibility diverges at ϵ = 0. For α > αc
(red line), ⟨σz⟩ε is discontinuous at ϵ = 0.

TABLE 1.2: Summary of the critical exponents.

Exponent Definition Condition
γ χ0 ∝ (αc − α)−γ α < αc, T = 0
β′ mz ∝ (α − αc)β′

α > αc, T = 0
η C(τ) ∝ τ−η α = αc, |τ| ≪ 1/kBT
x χ0 ∝ T−x α = αc, T > 0

corresponds to the static susceptibility defined as

χ0 = lim
ϵ→0

⟨σz⟩ε

ϵ
, (1.20)

where ⟨· · ·⟩ implies an equilibrium average. The static susceptibility diverges as
the system-reservoir coupling α approaches the critical point αc from below. In the
localized phase (α > αc), the population ⟨σz⟩ε jumps from −mz to +mz at ϵ = 0,
where mz ≡ ⟨σz⟩ϵ→+0 is the spontaneous magnetization. Information of the sys-
tem dynamics in thermal equilibrium is included in the imaginary-time correlation
function C(τ) = ⟨σz(τ)σz(0)⟩. In Table 1.2, we summarize the critical exponents. In
principle, all the exponents can be determined experimentally by measurement of
the population ⟨σz⟩ε. By using the two exponents related to the fixed point, y∗t and
y∗h, the critical exponents in Table 1.2 are expressed as [37]

γ =
2y∗h − 1

y∗t
, β′ =

1 − y∗h
y∗t

, η = 1 − x = 2 − 2y∗h. (1.21)

For the case of 0 < s ≤ 0.5, the exponents, y∗t and y∗h, are given by the mean-field
theory as [41, 42, 37]

y∗t =
1
2

, y∗h =
3
4

, (1.22)

because the transition occurs above the upper critical dimension. Hence, we obtain

γ = 1, β′ =
1
2

, η =
1
2

, x =
1
2

. (1.23)
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FIGURE 1.9: The static susceptibility χ0 and magnetization mz close
to the critical point for s = 0.2 and ∆/ωc = 0.1 [37]. (a) χ0 as a
function of the distance from the critical point −δ ≡ −(α − αc)/αc >
0 for different temperatures. As the temperature is lowered, the static
susceptibility approaches a line proportional to (−δ)−1. (b) mz as a
function of δ > 0 for different s. The straight lines are proportional to
δ1/2. (c)-(d) T1/2χ and T−1/4mz collapse onto one point at δ = 0.

Winter et al. have demonstrated using the quantum Monte Carlo simulation and con-
firmed that these critical exponents for 0 < s ≤ 0.5 agree with the numerical results
in Fig. 1.9 [37]. For 0.5 < s < 1, the exponents, y∗t and y∗h, are nontrivial functions
of the exponent s of the spectral density. Luijten has calculated the exponents using
the ε-expansion as follows [41]:

y∗t = s +
1
6

ε − 4A(s)
9s

ε2 +O(ε3), y∗h =
1 + s

2
+

1
4

ε − A(s)
6s

ε2 +O(ε3), (1.24)

where ε = 2s − 1, A(s) = s [ψ(1)− 2ψ(s/2) + ψ(s)], and ψ(x) is the digamma
function. Vojta et al. have studied quantum critical phenomena using the numeri-
cal renormalization group (NRG) for all values of s [35, 36, 38, 40]. The NRG pro-
duces the phase diagram consistent with one from the quantum Monte Carlo meth-
ods [35, 37]. However, the NRG simulation gives incorrect critical exponents which
do not agree with those from the quantum Monte Carlo method [37] or Eq. (1.22)
for the case of 0 < s ≤ 0.5. In Ref. [40], the origin of this disagreement has been
discussed and attributed to a failure in describing quantum critical phenomena in
a naive NRG simulation. Finally, we show a schematic phase diagram of the sub-
Ohmic spin-boson model in Fig. 1.10.

So far, experimental realization of the sub-Ohmic spin-boson model has been dis-
cussed only in few theoretical works. In Refs. [43, 44], experimental realization of the
sub-Ohmic reservoirs of s = 0.5 was theoretically proposed using transmission lines
with resistance elements. The sub-Ohmic reservoirs with arbitrary s have, however,
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FIGURE 1.10: The phase diagram of the sub-Ohmic case. At zero tem-
perature, a quantum phase transition occurs between the delocalized
and localized phases at the critical point α = αc. In contrast, at finite
temperature, there is a crossover between the co-tunneling and inco-
herent tunneling regimes.

not been discussed.

1.6 Purpose

In this thesis, we study heat transport using the spin-boson model, which is the
simplest model to describe heat transport via a nano-scale object. Despite its sim-
pleness, the spin-boson model exhibits remarkable many-body phenomena such as
the Kondo effect and the quantum phase transition. Theoretical analysis of the spin-
boson model not only contributes to the understanding of transport processes and
many-body effect in heat transport but also provides a concrete foundation for de-
signing novel thermal devices.

In this thesis, we focus on heat transport near equilibrium, for which the linear
response theory is applicable. We calculate the thermal conductance, which is the
linear-response coefficient in heat current under a temperature gradient, using both
analytical and numerical methods. We first derive analytical formulas for three dif-
ferent transport processes, i.e., sequential tunneling, co-tunneling, and incoherent
tunneling. In a previous study [45], Kato has derived a new asymptotically exact
expression including higher-order perturbations, which are not taken into account
in the previous work by Ruokola and Ojanen [23]. This new formula is applicable
also to the non-Ohmic spin-boson model and is useful to understand the Kondo-
like effect at low-temperatures. We perform the continuous-time quantum Monte
Carlo simulation and compare the numerical results with these analytical formu-
las. The present Monte Carlo study is a substantial extension of the previous work
by Saito and Kato [29] toward arbitrary types of reservoirs; in Ref. [29], only the
Ohmic reservoirs have been considered. We confirm the temperature dependen-
cies predicted by our expressions for the co-tunneling and the sequential-tunneling
transport regime, and in addition, discuss the accuracy of noninteracting-blip ap-
proximation (NIBA) [15] in incoherent tunneling regime. We consider a general
picture to understand transport properties at extremely low temperatures for the
whole regime of spectral densities and also characterize the transport mechanism
for all temperature regimes quantitatively.
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In this thesis, we also investigate quantum critical phenomena in heat transport
via a two-state coupled to the sub-Ohmic reservoirs. We calculate the temperature
dependence of thermal conductance in the critical regime and discuss how its critical
exponent is determined. We also propose superconducting circuits to realize the
sub-Ohmic spin-boson model with an arbitrary value of s. The present study will
provide a useful starting point for observing quantum critical phenomena via heat
transport.

1.7 Outline

This thesis is organized as follows. In Chapter 2, we explain the spin-boson model
in detail and derive the linear thermal conductance using the Keldysh formalism. In
Chapter 3, after introducing an effective tunneling amplitude, we classify the trans-
port mechanism and derive analytical expressions for the thermal conductance in
each process. We also consider quantum critical phenomena in the sub-Ohmic case.
In Chapter 4, we explain the numerical method to calculate the thermal conductance
based on the continuous-time quantum Monte Carlo method. In Chapter 5, we show
numerical results of the thermal conductance and compare the results with analyt-
ical approximations derived in Chapter 3. We also determine the critical exponent
of the thermal conductance in the sub-Ohmic case. In Chapter 6, we propose su-
perconducting circuits with a qubit to realize the sub-Ohmic reservoirs. Finally, we
summarize our study in Chapter 7.
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Chapter 2

Formulation

In this chapter, we first introduce a general Hamiltonian coupled to reservoirs and
consider the reduction of it to the spin-boson Hamiltonian. Second, we derive the
Meir-Wingreen-Landauer-type formula for the thermal conductance using the stan-
dard Keldysh formalism.

2.1 Model

We consider heat transport via a local quantum system coupled to two reservoirs
denoted by L and R. The model Hamiltonian is given by

H = HS + ∑
ν=L,R

HB,ν + ∑
ν=L,R

HI,ν, (2.1)

HS =
p2

2M
+ V(q), (2.2)

HB,ν = ∑
k

(
pν,k

2mν,k
+

1
2

mν,kω2
ν,kx2

ν,k

)
, (2.3)

HI,ν = ∑
k

(
−Cν,kxν,kq +

C2
ν,k

2mν,kω2
k,ν

q2

)
, (2.4)

where HS, HB,ν, and HI,ν describe the local system, the reservoir ν (=L, R), and the in-
teraction between them, respectively. The operators p and q are the momentum and
position of the local system, respectively, and V(q) is the potential energy. The reser-
voirs comprise multiple phonon (or photon) modes, which are described in general
by harmonic oscillators with frequency ων,k and mass mν,k, where the subscript de-
notes the phonon (photon) wavenumber k in the reservoir ν. The momentum and
position of an individual oscillator are denoted by pν,k and xν,k, respectively. For
simplicity, the system-reservoir coupling HI,ν is consider as a bilinear form of q and
xν,k, and the interaction strength is denoted by Cν,k. The second term of HI,ν is a
counter term to cancel the potential renormalization due to the reservoirs [46, 15].

In this thesis, the potential energy V(q) of the local system is considered as a
double-well potential as shown in Fig. 2.1:

V(q) =
Mω2

0
2

(
q2 − 1

4 q2
0

q0

)2

, (2.5)

where ω0 is the frequency of small oscillation in each well. The double-well po-
tential, V(q), has minimal potential energy V(±q0/2) = 0 at q = ±q0/2 and the
barrier height Vb ≡ V(q = 0) = Mω2

0q2
0/32. Quantum tunneling between the two
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FIGURE 2.1: Symmetric double-well potential of the local system. An
energy spacing of quantum levels in each well is ω0 (indicated by the
blue solid lines), and an energy splitting due to quantum tunneling
(indicated by the red dashed lines) is ∆ = Ee − Eg, where Eg and Ee
are the ground-state energy and the first-excited-state energy, respec-
tively.

wells induces small energy splitting ∆0 between the ground-state energy Eg and the
first-excited-state energy Ee.

We consider the parameter regime

∆0, |ϵ|, kBT ≪ ω0 ≪ Vb, (2.6)

where ω0 is the energy spacing of quantum levels in each well, ϵ is a detuning en-
ergy. The tunneling amplitude ∆0 can be calculated using instanton methods as
follows (see Appendix A) [15, 47]:

∆0 = 8

√
2Vb

πω0
ω0 exp

(
−16Vb

3ω0

)
, (2.7)

the local system with the double-well potential is effectively restricted to a two-
dimensional Hilbert space spanned by the states |↑⟩ and |↓⟩ localized in the right
and left wells, respectively, and described by the two-state Hamiltonian in terms of
the Pauli matrices {σi} in the pseudo-spin form (see Fig. 2.2):

HS = −∆
2

σx − ϵσz. (2.8)

Here, for later convenience, we employ the renormalized tunneling amplitude ∆,
which includes the effect of the high-frequency oscillators using adiabatic renormal-
ization (for the detail discussion, see Section 3.1), instead of the bare tunneling am-
plitude ∆0. In this thesis, we examine the symmetric double-well potential (ϵ = 0).
For the symmetric case (ϵ = 0), the system Hamiltonian HS describes the tunneling
splitting ∆ between the ground state (σx = +1) and the first excited state (σx = −1).
Introducing annihilation and creation operators of the harmonic oscillators with the
wavenumber k in the reservoir ν:

bν,k =

√
mν,kων,k

2

(
xν,k + i

pν,k

mν,kων,k

)
, (2.9)

b†
ν,k =

√
mν,kων,k

2

(
xν,k − i

pν,k

mν,kων,k

)
, (2.10)
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FIGURE 2.2: Schematic of the model comprises a two-state system
coupled to two bosonic reservoirs (L and R) with temperatures TL and
TL, respectively. Symmetric double-well potential of the local system.
(a) σx-basis and (b) σz-basis for the local two-state system.

the Hamiltonians of the reservoir and the system-reservoir interaction can be ex-
pressed in terms of these operators:

HB,ν = ∑
k

ων,kb†
ν,kbν,k, (2.11)

HI,ν = −σz

2 ∑
k

λν,k

(
bν,k + b†

ν,k

)
, (2.12)

respectively, where λν,k = q0Cν,k/
√

2mν,kων,k. Here we have dropped the irrelevant
constant zero-point energies. Consequently, we obtained the spin-boson Hamilto-
nian:

H = HS + HB + HI, (2.13)

HS = −∆
2

σx − ϵσz, (2.14)

HB = ∑
ν=L,R

HB,ν = ∑
ν,k

ων,kb†
ν,kbν,k, (2.15)

HI = ∑
ν=L,R

HI,ν = −σz

2 ∑
ν,k

λν,k

(
bν,k + b†

ν,k

)
. (2.16)

The reservoir effects are characterized by the spectral density:

I(ω) = ∑
ν=L,R

Iν(ω) = ∑
ν=L,R

∑
k

λ2
ν,kδ(ω − ων,k) = α Ĩ(ω), (2.17)

Ĩ(ω) = 2ω

(
ω

ωc

)s−1

e−ω/ωc , (2.18)

where α = αL + αR is the dimensionless coupling strength between the two-state
system and the reservoirs, and ωc is the cutoff frequency. In this thesis, we focus on
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the symmetric case (ε = 0) and only use the detuning energy to defined the static
susceptibility

χ0 = lim
ε→0

⟨σz⟩
ε

, (2.19)

where ⟨· · ·⟩ denotes an equilibrium average.

2.2 Thermal conductance

In this section, we derive the linear thermal conductance from the spin-boson model.
First, based on previous studies [23, 29, 3], we derive the Meir-Wingreen-Landauer
formula for the heat current in the Keldysh formalism. The heat current flowing
from the reservoir ν into the local two-state system is defined as follows:

Jν ≡ −dHB,ν

dt
= i[HB,ν, H] = −i

σz

2 ∑
k

λν,kων,k

(
−bν,k + b†

ν,k

)
. (2.20)

The average of the heat current is written as

⟨Jν(t)⟩ = Tr [ρJν(t)] = Tr [ρ(t)Jν] , (2.21)

Here ρ is the initial-state density matrix

ρ = ρS ⊗ ∏
ν=L,R

ρν, (2.22)

ρν =
1

Zν
e−βν HB,ν , (2.23)

where ρ(t) = e−iH(t−t0)ρeiH(t−t0) and Zν is the partition function of the isolated reser-
voir ν. Hereafter, we consider the average of the observables after realizing the
steady state by taking the limit t0 → −∞. Substituting the definition of the heat
current (2.20) into Eq. (2.21), the heat current is rewritten as

⟨Jν(t)⟩ = ∑
k

ων,kλν,k

2

[
G<

σz,b†
ν,k
(t1, t2) +

(
G<

σz,b†
ν,k
(t1, t2)

)∗]∣∣∣∣
t1=t2=t

(2.24)

= Re

[
∑

k
ων,kλν,k G<

σz,b†
ν,k
(t1, t2)

]∣∣∣∣∣
t1=t2=t

, (2.25)

where G<
σz,b†

ν,k
(t1, t2) is the lesser Green function defined as

G<
A,B(t, t′) = −i ⟨B(t′)A(t)⟩ , (2.26)

where A(t) = eiHt Ae−iHt and B(t) = eiHtBe−iHt. In addition, the retarded and ad-
vanced Green functions are defined as

Gr
A,B(t, t′) = −iθ(t − t′) ⟨[A(t), B(t′)]⟩ , (2.27)

Ga
A,B(t, t′) = iθ(t′ − t) ⟨[A(t), B(t′)]⟩ , (2.28)

respectively, where θ(t) is the Heaviside step function.
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FIGURE 2.3: Keldysh contour C. C+ is the forward branch and C− is
the backward branch.

Next, let us calculate the lesser Green function G<
σz,b†

ν,k
(t1, t2) in the Keldysh for-

malism [48]. We introduce the Green function on the Keldysh contour as

GA,B(τ, τ′) = −i ⟨TC A(τ)B(τ′)⟩ , (2.29)

where TC is a time-ordered product on the Keldysh contour. The Keldysh contour
consists of two oriented branches C = C+ ∪ C−, the forward branch C+ extending
from −∞ to ∞ and the backward branch C− extending from ∞ to −∞ (see Fig. 2.3).
Using the formal expansion with respect to λν,k, the Green function can be written
as

Gσz,b†
ν,k
(τ1, τ2) = −i ⟨TCSCσ̃z(τ1)b̃†

ν,k(τ2)⟩ . (2.30)

Here Õ(τ) = ei(HS+HB)τOe−i(HS+HB)τ and SC is the S-matrix defined as

SC =
∞

∑
n=0

(−i)n

n!

∫
C

du1 · · ·
∫

C
dun H̃I(u1) · · · H̃I(un), (2.31)

where ui is a time variable on the Keldysh contour and
∫

C dui implies a line integral
along the Keldysh contour. Thus, we obtain the relation

Gσz,b†
ν,k
(τ1, τ2) =

λν,k

2

∫
C

du Gσz,σz(τ1, u)gbν,k ,b†
ν,k
(u, τ2), (2.32)

where gbν,k ,b†
ν,k
(u, τ2) is the Green function for the isolated reservoir ν. By projection

onto the real-time axis using the Langreth rule [48], the lesser Green function can be
written as

G<
σzb†

ν,k
(t1, t2) =

λν,k

2

∫ ∞

−∞
ds
[

Gr
σz,σz

(t1, s)g<bν,k ,b†
ν,k
(s, t2) + G<

σz,σz
(t1, s)ga

bν,k ,b†
ν,k
(s, t2)

]
.

(2.33)
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Substituting this expression of the lesser Green function (2.33) into Eq. (2.25), the
heat current is then rewritten as

⟨Jν(t)⟩ = Re
∫ ∞

−∞
ds ∑

k

λ2
ν,k

2
ων,k

×
[

Gr
σz,σz

(t1, s)g<bν,k ,b†
ν,k
(s, t2) + G<

σz,σz
(t1, s)ga

bν,k ,b†
ν,k
(s, t2)

]∣∣∣∣
t1=t2=t

= Re
∫ ∞

−∞
ds (−i)

∂

∂t2

[
Gr

σz,σz
(t1, s)Σ<

ν (s, t2) + G<
σz,σz

(t1, s)Σa
ν(s, t2)

]∣∣
t1=t2=t ,

(2.34)

where Σ<
ν (t, t′) and Σa

ν(t, t′) are the lesser and advanced self-energies

Σ<
ν (t, t′) ≡ ∑

k

λ2
ν,k

2
g<bν,k ,b†

ν,k
(t, t′) = − i

2 ∑
k

λ2
ν,knν(ων,k)e−iων,k(t−t′)

= − i
2

∫ ∞

0
dω ∑

k
λ2

ν,kδ(ω − ων,k)nν(ω)e−iω(t−t′)

= − i
2

∫ ∞

0
dω Iν(ω)nν(ω)e−iω(t−t′), (2.35)

Σa
ν(t, t′) ≡ ∑

k

λ2
ν,k

2
ga

bν,k ,b†
ν,k
(t, t′) =

i
2

θ(t′ − t)∑
k

λ2
ν,ke−iων,k(t′−t)

=
i
2

θ(t′ − t)
∫ ∞

0
dω ∑

k
λ2

ν,kδ(ω − ων,k)e−iω(t′−t)

=
i
2

θ(t′ − t)
∫ ∞

0
dω Iν(ω)e−iω(t′−t), (2.36)

respectively. Here nν(ω) =
(
eβνω − 1

)−1 is the Bose-Einstein distribution function
in reservoir ν. We have used the definition of the spectral density (2.17). Performing
a Fourier transform on the heat current (2.34), we obtain

⟨Jν⟩ =
1
2

∫ ∞

0
dω ωIν(ω)

[
Im
[
Gr

σz,σz
(ω)

]
nν(ω)− i

2
G<

σz,σz
(ω)

]
. (2.37)

The conservation law of energy ⟨JL⟩ = − ⟨JR⟩ ≡ ⟨J⟩ gives

⟨J⟩ =
αR

αL + αR
⟨JL⟩ −

αL

αL + αR
⟨JR⟩ (2.38)

=
αLαR

2 (αL + αR)

∫ ∞

0
dω ωIm

[
Gr

σz,σz
(ω)

]
Ĩ(ω) [nL(ω)− nR(ω)] , (2.39)

where Ĩ(ω) = α−1
ν Iν(ω) (see Eq. (2.17)). Rewriting Gr

σz,σz
(ω) with χ(ω), we finally

obtain

⟨J⟩ = αγ

8

∫ ∞

0
dω ωIm [χ(ω)] Ĩ(ω) [nL(ω)− nR(ω)] , (2.40)

where α = αL + αR, γ = 4αLαR/α2 is an asymmetric factor, and χ(ω) is the dynami-
cal susceptibility of the two-state system defined by

χ(ω) = −i
∫ ∞

0
dt eiωt ⟨[σz(t), σz(0)]⟩ . (2.41)
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This expression of the heat current is called the Meir-Wingreen-Landauer formula.
The thermal conductance is defined as

κ ≡ lim
∆T→0

⟨J⟩
∆T

. (2.42)

Using the formula (2.40), the linear thermal conductance is given as

κ =
αγkB

8

∫ ∞

0
dω Im [χ(ω)] Ĩ(ω)

[
βω/2

sinh(βω/2)

]2

, (2.43)

where χ(ω) is evaluated for the thermal equilibrium and β = 1/kBT. Thus, we need
to calculate the dynamical susceptibility, χ(ω), for evaluating the linear thermal con-
ductance.

For convenience of discussion, we also introduce a symmetrized correlation func-
tion and its Fourier transformation:

S(t) ≡ 1
2
⟨σz(t)σz(0) + σz(0)σz(t)⟩ , (2.44)

S(ω) =
∫ ∞

−∞
dt eiωtS(t). (2.45)

From the fluctuation-dissipation theorem [15], the imaginary part of the dynamical
susceptibility is related to S(ω) as

S(ω) = coth
(

βω

2

)
Im [χ(ω)] . (2.46)

Then, the thermal conductance is rewritten in terms of the symmetrized correlation
function, S(ω), as

κ =
αγkB

8

∫ ∞

0
dω tanh

(
βω

2

)
S(ω) Ĩ(ω)

[
βω/2

sinh(βω/2)

]2

. (2.47)
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Chapter 3

Transport Processes and Quantum
Critical Phenomena

The dynamics of dissipative two-state systems have long been studied using various
approximations [15, 6]. In this chapter, we re-examine such analytical approxima-
tions from the viewpoint of heat transport. In Section 3.1, we first consider the effec-
tive tunneling amplitude and discuss a quantum phase transition driven by strong
system-reservoir coupling. Next, we consider the three mechanisms, which we call
‘sequential tunneling’ (Section 3.2), ‘co-tunneling’ (Section 3.3), and ‘incoherent tun-
neling’ (Section 3.4). We derive analytical expressions for the thermal conductance
in each transport process. We also introduce the noninteracting-blip approximation
(NIBA) in Section 3.5.

In Section 3.6, we consider in detail the quantum phase transition for the sub-
Ohmic case. In the critical regime near the quantum phase transition, the temper-
ature dependence of thermal conductance becomes power law which is reflected
the nature of the quantum phase transition. We derive the critical exponent of the
thermal conductance.

3.1 Effective tunneling amplitude

One important effect of the system-reservoir coupling is renormalization of the tun-
neling amplitude ∆. In this section, we derive the effective tunneling amplitude via
adiabatic renormalization [15, 6] (see Fig. 3.1).

We assume that high-frequency oscillators (∆0 ≪ pωc < ω, p ∈ (0, 1)) instanta-
neously adjust their quantum states to the current value of σz. Then, the two lowest
energy eigenstates for the global system are described by

|Eg⟩ =
1√
2
(|ΨL⟩+ |ΨR⟩) , (3.1)

|Ee⟩ =
1√
2
(|ΨL⟩ − |ΨR⟩) , (3.2)

where |ΨL⟩ and |ΨR⟩ are give by

|ΨL⟩ = |σz = −1⟩ ⊗ ∏
ν,k

′ |ψ−
ν,k⟩ , (3.3)

|ΨR⟩ = |σz = +1⟩ ⊗ ∏
ν,k

′ |ψ+
ν,k⟩ , (3.4)

respectively. Here the prime symbol indicates that the product is in the range pωc <
ων,k. |ψ±

ν,k⟩ is the ground state of the oscillator with wavenumber k in reservoir ν
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FIGURE 3.1: A conceptual diagram of the adiabatic renormalization.
The spectral density is separated into two parts, I0

ν(ω) = Ilf
ν (ω) +

Ihf
ν (ω). In the first step, the tunneling amplitude ∆0 is renormalized

into the dressed tunneling amplitude ∆ by high-frequency oscillators
(orange arrow). In the second step, the dressed tunneling amplitude
∆ is renormalized into ∆(p) by oscillators with pωc < ω < ωc (blue
arrow). In general, the spectral density with high-frequency oscilla-
tors is complex shapes.

when the state of the local two-state system is located at right (left) well; it is obtained
by translation of the ground-state wavefunction |ψ0

ν,k⟩ for the isolated oscillators as

|ψ±
ν,k⟩ = e±iδν,k pν,k |ψ0

ν,k⟩ , (3.5)

δν,k =
Cν,k

mν,kω2
ν,k

q0

2
=

1√
2mν,kων,k

λν,k

ων,k
. (3.6)

Adiabatic renormalization suggests that the tunneling amplitude is renormalized by
the overlap between the ground states of the oscillators for different localized states
(σz = ±1):

∆(p) = ∆0 ∏
ν,k

′ ⟨ψ+
ν,k|ψ

−
ν,k⟩ = ∆0 ∏

ν,k

′ ⟨ψ0
ν,k| e−2iδν,k pν,k |ψ0

ν,k⟩

= ∆0 ⟨ψ0
ν,k| exp

[
∑
ν,k

′ λν,k

ων,k

(
b†

ν,k − bν,k

)]
|ψ0

ν,k⟩

= ∆0

∞

∑
n=0

1
n!

⟨ψ0
ν,k|
[
∑
ν,k

′ λν,k

ων,k

(
b†

ν,k − bν,k

)]n

|ψ0
ν,k⟩

= ∆0

∞

∑
n=0

1
n!

(
−1

2 ∑
ν,k

′ λ2
ν,k

ω2
ν,k

)n

= ∆0 exp

(
−1

2 ∑
ν,k

′ λ2
ν,k

ω2
ν,k

)

= ∆0 exp

[
−1

2 ∑
ν

∫ ∞

pωc

dω
I0
ν(ω)

ω2

]
. (3.7)

In general, the spectral density can be separated into two parts (see Fig. 3.1):

I0
ν(ω) = Ilf

ν (ω) + Ihf
ν (ω), (3.8)
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FIGURE 3.2: Schematics of the ground-state wavefunction (a) below
the transition (0 ≤ α < αc) and (b) above the transition (α > αc). The
former state is delocalized, whereas the latter is localized at one of the
two wells. For the localized state, quantum tunneling between the
two wells is forbidden since the overlap integral between the states
in the two wells vanishes.

where Ilf
ν (ω) is the spectral density for the low-frequency oscillators and given by

the power law behavior (2.18) (Ilf
ν (ω) = Iν(ω)), and Ihf

ν (ω) represents the high-
frequency oscillators and has complex behavior. In the first stage of the adiabatic
renormalization procedure, we consider high-frequency oscillators, ω > ωc, with
the spectral density Ihf

ν (ω). Then, the bare tunneling amplitude, ∆0, is changed into
the dressed tunneling amplitude, ∆, by renormalization of the high-frequency oscil-
lators (the orange arrow in Fig. 3.1):

∆(p) = ∆0 exp

[
−1

2 ∑
ν

∫ ∞

pωc

dω
Ilf
ν (ω) + Ihf

ν (ω)

ω2

]

= ∆ exp

[
−1

2 ∑
ν

∫ ∞

pωc

dω
Ilf
ν (ω)

ω2

]
= ∆ exp

[
−1

2 ∑
ν

∫ ∞

pωc

dω
Iν(ω)

ω2

]

= ∆ exp

[
−α

∫ ∞

pωc

dω
(ω/ωc)

s−1

ω
e−ω/ωc

]
. (3.9)

In the second stage, we consider the low-frequency oscillators with the power law
spectral density Ilf

ν (ω) (2.18). If the renormalized tunneling amplitude ∆(p) is less
than pωc, the adiabatic renormalization can continue by reducing the factor p (the
blue arrow in Fig. 3.1). If ∆(p∗) = p∗ωc holds at p = p∗, adiabatic renormalization
must be stopped there and the finite effective tunneling amplitude ∆eff = ∆(p∗),
which is a characteristic energy scale of the global system, is obtained. In contrast,
if ∆(p) < pωc holds for an arbitrary value of p, adiabatic renormalization can be
completed even at p = 0, yielding an effective tunneling amplitude of zero (∆eff =
0).

For the Ohmic case (s = 1), the effective tunneling amplitude is obtained as
follows:

∆′
eff =

∆
(

∆
ωc

)α/(1−α)

, (0 < α < 1),

0, (1 ≥ α).
(3.10)
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FIGURE 3.3: Schematic of the sequential tunneling process. Heat
transport occurs by a combination of (a) phonon (photon) absorption
and (b) phonon (photon) emission.

In this thesis, we employ a modified effective tunneling amplitude multiplied by a
dimensionless function of α [15]:

∆eff = [Γ(1 − 2α) cos(πα)]1/2(1−α) ∆′
eff. (3.11)

This result indicates a phase transition at zero temperature, for which the critical
value of the system-reservoir coupling is α = 1 [49, 50]. For system-reservoir cou-
plings below the transition (0 < α < 1), the ground state is non-degenerate, as
shown in Fig. 3.2 (a), indicating the coherent superposition of the two localized states
|↑⟩ and |↓⟩. We call this ground state ‘delocalized’. For strong system-reservoir cou-
plings above the transition (1 < α), the coherent superposition of the two localized
states is completely broken, leading to the doubly-degenerate ground states shown
in Fig. 3.2 (b). We call this ground state ‘localized’. In this localized regime, quantum
tunneling between the wells is forbidden at zero temperature since there is no mix-
ing (∆eff = 0) between the two localized states. Thus, the present quantum phase
transition can be recognized as a ‘localization’ transition that separates the delocal-
ized and localized regimes at zero temperature.

For the sub-Ohmic case (0 < s < 1), the adiabatic renormalization always leads
to an effective tunneling amplitude of zero (∆eff = 0). This is correct in the limit
∆/ωc → 0, as discussed in a previous study [6]. However, for a finite value of
∆/ωc, the naive adiabatic renormalization procedure yields incorrect results and
should be improved. In subsequent theoretical studies [51, 52] , it was found that
the localization transition actually occurred at a critical system-reservoir coupling
(α = αc), where the critical value αc depended on both s and ∆/ωc. The existence of
the localization transition was also confirmed via numerical calculations [36, 37]. In
summary, for the sub-Ohmic case, the ground state is delocalized for 0 < α < αc, as
shown in Fig. 3.2 (a), and localized for αc < α as shown in Fig. 3.2 (b).

For the super-Ohmic case (s > 1), the effective tunneling amplitude is always
finite:

∆eff = ∆e−αΓ(s−1), (3.12)

where Γ(z) is the Gamma function. Therefore, there is no localization transition and
the ground state is always delocalized, as shown in Fig. 3.2 (a).
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3.2 Sequential tunneling

For weak system-reservoir couplings (α ≪ 1), the system and the reservoirs are
almost decoupled and the interaction Hamiltonian HI,ν can be regarded as a per-
turbation. For the second-order perturbation, the system dynamics are described
by a stochastic transition between the ground state (σx = +1) and the excited state
(σx = −1), as shown in Fig. 3.3. The transition from the ground state to the ex-
cited state involves phonon (photon) absorption, and the inverse transition involves
phonon (photon) emission. A combination of these two processes induces heat
transport. We refer to this type of transport process as ‘sequential tunneling’. The
transition rates for processes of absorption and emission can be calculated using
Fermi’s golden rule:

Γj = 2π |⟨ f | HI |i⟩|2 δ(ϵ f − ϵi), (3.13)

where |i⟩ (| f ⟩) and ϵi (ϵ f ) are eigenstate of HS + HB and its eigenvalue, respectively.
Introducing the lowering and raising operators

σ+
x ≡

σz − iσy

2
=

1
2

(
1 −1
1 −1

)
, (3.14)

σ−
x ≡

σz + iσy

2
=

1
2

(
1 1
−1 −1

)
, (3.15)

respectively, the interaction Hamiltonian HI,ν is rewritten in terms of σ+
x and σ−

x as

HI,ν = −1
2 ∑

ν,k
λν,k

(
σ+

x bν,k + σ+
x b†

ν,k + σ−
x bν,k + σ−

x b†
ν,k

)
. (3.16)

Here the second and third terms on the right side of Eq. (3.16) correspond to the
process of emission and absorption, respectively. Substituting the expression of the
interaction Hamiltonian (3.16) corresponding to the process of emission into Fermi’s
golden rule (3.13), we obtain the transition rates for process of emission as follows:

Γe = 2π

∣∣∣∣∣⟨σx = +1| ⊗ ∑
ν2,k2

⟨nν2,k2 |
(
−1

2 ∑
ν,k

λν,kσ+
x b†

ν,k

)
|σx = −1⟩ ⊗ ∑

ν1,k1

|nν1,k1⟩
∣∣∣∣∣
2

×δ(ων,k − ∆)

= 2π ∑
ν,k

∑
ν1,k1

∑
ν2,k2

λ2
ν,k

4

∣∣∣⟨nν2,k2 | b†
ν,k |nν1,k1⟩

∣∣∣2 δ(ων,k − ∆)

= 2π ∑
ν,k

λ2
ν,k

4
[nB(ων,k) + 1] δ(ων,k − ∆)

=
π

2
[nB(∆) + 1]∑

ν,k
λ2

ν,kδ(ων,k − ∆) =
π

2
I(∆) [nB(∆) + 1] , (3.17)
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where I(ω) = IL(ω) + IR(ω) and nB(ω) =
(
eβω − 1

)−1 is the Bose-Einstein distri-
bution function. Similarly, the rate for the process of absorption is obtained by

Γa = 2π

∣∣∣∣∣⟨σx = −1| ⊗ ∑
ν2,k2

⟨nν2,k2 |
(
−1

2 ∑
ν,k

λν,kσ−
x bν,k

)
|σx = +1⟩ ⊗ ∑

ν1,k1

|nν1,k1⟩
∣∣∣∣∣
2

×δ(∆ − ων,k)

=
π

2
I(∆)nB(∆). (3.18)

For weak system-reservoir coupling, the density matrix of the two-state system
can be described by the quantum master equation in the Lindblad form [53]:

dρ(t)
dt

= −i [HS, ρ(t)] + ∑
j=a,e

Γj

[
Ljρ(t)L†

j −
1
2

(
L†

j Ljρ + ρL†
j Lj

)]
, (3.19)

where La = σ−
x and Le = σ+

x are Lindblad operators. Since Hilbert space of the two-
state system is spanned by just two states, an excited state |σx = −1⟩ and a ground
state |σx = +1⟩, it is convenient to represent the density matrix as

ρ(t) =
1
2
(1 + ⟨⃗σ(t)⟩ · σ⃗) =

1
2

(
1 + ⟨σz(t)⟩ ⟨σx(t)⟩ − i ⟨σy(t)⟩

⟨σx(t)⟩+ i ⟨σy(t)⟩ 1 − ⟨σz(t)⟩

)
. (3.20)

With the help of the algebra of the Pauli matrices, the Lindblad equation (3.19) gives
the differential equations:

d ⟨σx(t)⟩
dt

= Γe (1 − ⟨σx(t)⟩)− Γa (1 + ⟨σx(t)⟩) , (3.21)

d ⟨σy(t)⟩
dt

= ∆ ⟨σz(t)⟩ − Γ ⟨σy(t)⟩ , (3.22)

d ⟨σz(t)⟩
dt

= −∆ ⟨σy(t)⟩ − Γ ⟨σz(t)⟩ , (3.23)

where Γ = (Γa +Γe)/2. We observe that the x-component, ⟨σx(t)⟩, given by Eq. (3.21)
decays exponentially with rate 2Γ. The differential equations for y- and z-components
(3.22), (3.23) are written in matrix form

d
dt

(
⟨σz(t)⟩
⟨σy(t)⟩

)
= G

(
⟨σz(t)⟩
⟨σy(t)⟩

)
, (3.24)

where G is a coefficient matrix

G =

(
−Γ −∆
+∆ −Γ

)
. (3.25)

Using the quantum regression theorem [53], which states that the correlation func-
tion satisfies the same system of differential equations:

d
dt

⟨σi(t)σj(0)⟩ = ∑
k

Gik ⟨σk(t)σj(0)⟩ , (3.26)
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we obtain the differential equations for the correlation functions

d
dt

⟨σz(t)σz(0)⟩ = −Γ ⟨σz(t)σz(0)⟩ − ∆ ⟨σy(t)σz(0)⟩ , (3.27)

d
dt

⟨σy(t)σz(0)⟩ = +∆ ⟨σz(t)σz(0)⟩ − Γ ⟨σy(t)σz(0)⟩ . (3.28)

From Eq. (3.27) and (3.28), under boundary conditions:

⟨σz(0)σz(0)⟩ = 1, (3.29)
d
dt

⟨σz(t)σz(0)⟩|t=0 = 0, (3.30)

the z-z correlation function is obtained as

⟨σz(t)σz(0)⟩ =
1
∆

e−Γt [∆ cos(∆t) + Γ sin(∆t)] . (3.31)

Since the symmetrized correlation function (2.44) has time-reversal symmetry, it is
written as

S(t) = ⟨σz(|t|)σz(0)⟩ =
1
∆

e−Γ|t| [∆ cos(∆|t|) + Γ sin(∆|t|)] . (3.32)

Performing a Fourier transform on it, we finally derive the symmetrized correlation
function as follows:

S(ω) =
4Γ(∆2 + Γ2)

[(ω − ∆)2 + Γ2] [(ω + ∆)2 + Γ2]
. (3.33)

The correlation function S(ω) has two peaks at ω = ±∆, reflecting the coherent
system dynamics. Because Γ ≪ ∆ always holds in the weak coupling regime, the
correlation function is approximated as

S(ω) ≃ π [δ(ω − ∆) + δ(ω + ∆)] , (3.34)

where is δ(x) is the delta function. The thermal conductance for the weak coupling
regime is obtained by substituting Eq. (3.34) into Eq. (2.47) as follows

κ ≃ παγkB

8
tanh

(
β∆
2

)
Ĩ(∆)

[
β∆/2

sinh(β∆/2)

]2

. (3.35)

This result is identical to the formula derived in previous research [29, 7] using the
master equation approach and is consistent with the perturbation theory [23]. For
actual comparison with the numerical simulation in Section 5, we improve the ap-
proximation by replacing ∆ with ∆eff using adiabatic renormalization. Then, the
symmetrized correlation function is improved to

S(ω) =
4Γ(∆2

eff + Γ2)

[(ω − ∆eff)2 + Γ2] [(ω + ∆eff)2 + Γ2]
. (3.36)

For this function to have two peaks at ω = ∆eff, it is necessary to hold the condition
as follows

Γ =
π

4
[1 + 2nB(∆eff)] I(∆eff) ≪ ∆eff. (3.37)



28 Chapter 3. Transport Processes and Quantum Critical Phenomena

FIGURE 3.4: Schematic of the co-tunneling process. At kBT ≪ ∆eff,
heat transport via a virtual excitation in the local system is dominant.

For the sub-Ohmic case (s < 1), this condition is never satisfied, indicating the ab-
sence of a sequential tunneling regime. For the Ohmic case (s = 1), the condition
is equivalent to α ≪ 1, whereas for the super-Ohmic case (s > 1), the condition
is always satisfied for a moderate temperature (kBT ∼ ∆eff). At high temperatures
(kBT ≫ ∆eff), the condition is always satisfied for s ≥ 2, whereas for 1 < s < 2, it
becomes

T < T∗ =
ωc

αkB

(
∆eff

ωc

)2−s

. (3.38)

where T∗ is the crossover temperature.
The formula for sequential tunneling (3.35) predicts the exponential decrease in

the thermal conductance as the temperature is lowered. At low temperatures, the
thermal conductance behaves as κ ∝ e−∆eff/kBT/T2; this is because the transition from
the ground state to the excited state is strongly suppressed if the thermal fluctuation
is smaller than the effective energy splitting, i.e., when kBT ≪ ∆eff. When the se-
quential tunneling process is strongly suppressed at low temperatures, Eq. (3.35)
becomes invalid since another process becomes dominant, as discussed in the next
subsection.

3.3 Co-tunneling

At low temperatures, heat transport via the virtual excitation of the local two-state
system becomes dominant (see Fig. 3.4); this transport process is known as ‘co-
tunneling’. In a previous study [23], an analytical expression for the thermal con-
ductance was derived using the fourth-order perturbation theory with respect to the
interaction HI,ν. However, in this calculation, the renormalization of the tunneling
amplitude at a low temperature has not been considered.

Here, we derive an asymptotically exact formula for the thermal conductance
without any approximations [54]. For this purpose, we focus on an asymptotically
exact relation called the generalized Shiba relation [55, 56]:

lim
ω→0+

S(ω)

Ĩ(ω)
= πα

(χ0

2

)2
, (3.39)

where χ0 is the static susceptibility defined in Eq. (2.19). This exact relation holds
at low temperatures (kBT ≪ ∆eff) for arbitrary environments and arbitrary system-
reservoir couplings. At low temperatures (kBT ≪ ∆eff), the dominant contribution
to the integral of Eq. (2.47) comes from the low-frequency part (0 ≤ ω ≃ kBT ≪ ∆eff)
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FIGURE 3.5: Schematic of the incoherent tunneling process. The
wavefunction is localized in the two wells, and a stochastic transi-
tion occurs between them.

due to the factor of the Bose-Einstein distribution function. By substituting the low-
frequency asymptotic form S(ω) ≃ πα (χ0/2)2 Ĩ(ω) into Eq. (2.47), we obtain [54]

κ ≃ πkBχ2
0

8

∫ ∞

0
dω IL(ω)IR(ω)

[
βω/2

sinh(βω/2)

]2

. (3.40)

This expression is similar to the co-tunneling formula in previous studies [23, 57] but
significantly differs in terms of the static susceptibility, χ0, which considers higher-
order processes. Eq. (3.40) can be rewritten as

κ ≃ 1
2

πkBαLαRω3
c χ2

0

(
kBT
ωc

)2s+1

F(s), (3.41)

F(s) =
∫ ∞

0
dx x2s

[
x/2

sinh(x/2)

]2

, (3.42)

where F(s) is a dimensionless function of s. Thus, we find that the thermal conduc-
tance is proportional to T2s+1 at low temperatures. The same temperature depen-
dence has been derived by the perturbation theory [23, 57]. However, the pertur-
bation theory cannot treat renormalization effect due to higher-order processes on
the static susceptibility and fails in predicting a correct prefactor including χ0. In
contrast, the present result given in Eq. (3.40) is asymptotically exact, incorporating
the renormalization effect appropriately.

The co-tunneling formula (3.40) holds universally at low temperatures for an
arbitrary exponent, s, as long as the ground state of the system is delocalized (∆eff >
0). In a previous study [29], the thermal conductance in the Ohmic case (s = 1)
was shown to be proportional to T3, which is consistent with Eq. (3.40), and this T3-
dependence was discussed in terms of the emergence of the Kondo effect. However,
it is worth noting that the power-law temperature dependences are derived in a
unified way even in the non-Ohmic cases. These temperature dependences result
from non-trivial many-body effects due to strong mixing between the system and
the reservoirs.

3.4 Incoherent tunneling

For a strong reservoir-system coupling, the coherent superposition of the two lo-
calized states is completely broken. In such a situation, heat transport is induced
by stochastic dynamics between the two localized states |↑⟩ and |↓⟩, as shown in
Fig. 3.5. We call this transport process ‘incoherent tunneling’.
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Within the Markov approximation [58], the stochastic dynamics of the system is
described by the master equation:

dPL(t)
dt

= −ΓPL(t) + ΓPR(t),
dPR(t)

dt
= ΓPL(t)− ΓPR(t), (3.43)

where PL(t) and PR(t)(= 1 − PL(t)) are the probabilities that the wavefunction of
the system is localized at the well on the left-hand side (σz = −1) and that on the
right-hand side (σz = +1), respectively, at time t. The transition rate Γ is calculated
via second-order perturbation with respect to the Hamiltonian HS as follows [6]:

Γ =
∆2

2

∫ ∞

−∞
dτ e−Q′(τ) cos

[
Q′′(τ)

]
, (3.44)

Q′(τ) =
∫ ∞

0
dω

I(ω)

ω2 coth
(

βω

2

)
[1 − cos(ωτ)] , (3.45)

Q′′(τ) =
∫ ∞

0
dω

I(ω)

ω2 coth
(

βω

2

)
sin(ωτ). (3.46)

Note that this expression for the transition rate of incoherent tunneling is valid when
Γ ≪ kBT [58]. By solving the master equation (3.43), the symmetrized correlation
function is calculated as

S(ω) =
4Γ

ω2 + 4Γ2 . (3.47)

In contrast to sequential tunneling, S(ω) has only one peak at ω = 0 with a width of
2Γ, indicating the destruction of the superposition of the two localized states.

The long-term dynamics are well described by the Markov approximation [6].
Therefore, one may expect that the thermal conductance in the incoherent tunneling
regime would be well approximated by substituting Eq. (3.44) into Eq. (2.47). How-
ever, the results of the Markov approximation show clear deviation from the numer-
ical results, as discussed in Section 5. The reason for this is summarized as follows.
Note that incoherent tunneling occurs when Γ ≪ kBT. Under this condition, the
integrand of Eq. (2.47) is proportional to ωs−2 for Γ ≪ ω ≪ kBT since S(ω) ∝ ω−2

(see Eq. (3.47)). Then, the integral in Eq. (2.47) diverges if the high-frequency cut-
off occurring due to the Bose-Einstein distribution function is absent. This indicates
that the high-frequency part of the integral in Eq. (2.47) makes the dominant con-
tribution to the thermal conductance. Although the Markov approximation yields
reasonable results for the low-frequency behavior of S(ω), it fails to reproduce the
accurate high-frequency behavior of S(ω) in general, leading to incorrect results for
the thermal conductance.

3.5 Noninteracting-blip approximation (NIBA)

To study the short-term (high-frequency) dynamics in the incoherent tunneling regime,
we introduce the noninteracting-blip approximation (NIBA), which is a natural ex-
tension of the Markov approximation in the previous section [6, 15]. In the NIBA, the
Fourier transformation of the symmetrized correlation function is expressed as [15]
(the detail derivation is given in Appendix C)

S(ω) = 2Re
[

1
−iω + Σ(−iω)

]
, (3.48)
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where Σ(λ = −iω) is the frequency-dependent self-energy defined as

Σ(λ) = ∆2
∫ ∞

0
dτ e−λτe−Q′(τ) cos

[
Q′′(τ)

]
. (3.49)

Here, Q′(τ) and Q′′(τ) are given by Eqs. (3.45) and (3.46), respectively. The thermal
conductance is then calculated by substituting Eq. (3.48) and (3.49) into Eq. (2.47).
From the definition, it is easy to check that the NIBA reproduces the Markov ap-
proximation if one neglect the frequency dependence of the self-energy and replace
it with the zero-frequency value Σ(0) = 2Γ. Since the NIBA appropriately considers
the non-Markovian properties, it is suitable to describe the thermal conductance in
the incoherent tunneling regime.

The condition for the NIBA is well known [15, 6]. As expected from the fact that
the NIBA is an extension of the Markov approximation, it works well for the incoher-
ent tunneling regime. Roughly, the incoherent tunneling mechanism becomes cru-
cial in a regime wherein both the sequential tunneling formula and the co-tunneling
formula fail. (a) The NIBA holds at moderate-to-high temperatures in the sub-Ohmic
(0 < s < 1) and Ohmic cases (s = 1). (b) It holds for T > T∗ in the super-Ohmic case
of 1 < s < 2, where T∗ is the crossover temperature defined in Eq. (3.38). Note that
the NIBA never holds for s ≥ 2 since the crossover temperature T∗ diverges.

Here, the NIBA has been introduced to improve the Markov approximation in
the incoherent regime. This introduction of the NIBA may give an impression to the
readers that the NIBA is a good approximation only in the incoherent regime. How-
ever, the NIBA is known to be applicable for a wider parameter region not restricted
to the incoherent regime [15, 6]. The NIBA holds also in the weak coupling regime
(α ≪ 1) at arbitrary temperature for the unbiased case (ϵ = 0), where the interblip
interaction is shown to be much weaker than the intrablip interaction. For this rea-
son, the NIBA yields almost the same result as the sequential tunneling formula or
the co-tunneling formula if the system-reservoir coupling is sufficiently weak.

In Section 5, we show that the NIBA is an excellent approximation for reproduc-
ing the numerical results for a wide region of the parameter space at moderate-to-
high temperatures. Thus, the short-term (high-frequency) non-Markovian behavior
in the system dynamics is important for calculating the thermal conductance in the
incoherent tunneling regime.

3.6 Quantum critical phenomena for the sub-Ohmic case

We explained three tunneling processes (sequential tunneling, co-tunneling, and in-
coherent tunneling) and derived the analytical expressions for the thermal conduc-
tance in each transport process. However, the temperature dependence of the ther-
mal conductance near the quantum phase transition for the sub-Ohmic case (as de-
scribed in Section 3.1) has not been discussed. In this section, we discuss quantum
critical phenomena induced by the second-order phase transition for the sub-Ohmic
case at zero temperature and determine the critical exponent of the thermal conduc-
tance using other critical exponents discussed in Section 1.5. In the quantum critical
regime near the quantum phase transition, the thermal conductance exhibits a dis-
tinctive power-law temperature dependence reflecting the nature of the quantum
phase transition:

κ ∝ Tc, (α = αc) (3.50)
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where c is the critical exponent dependent on s.
Let us discuss the critical exponent, c, defined in Eq. (3.50). The static suscepti-

bility defined in Eq. (2.19) is rewritten by

χ0 = β ⟨σ̄2
z ⟩eq , (3.51)

σ̄z =
1
β

∫ β

0
dτ σz(τ). (3.52)

where ⟨· · ·⟩eq indicates the thermal average and σz(τ) is the imaginary time path.
Combining Eq. (3.51) with (3.52), the static susceptibility is expressed as

χ0 =
∫ ∞

0
dτ C(τ), (3.53)

where C(τ) is the correlation function C(τ) ≡ ⟨σz(τ)σz(0)⟩eq. At the critical point,
the correlation function exhibits the power-law decay:

C(τ) = C(β − τ) ∼ τ−η , (ω−1
c ≪ τ ≪ β/2), (3.54)

where η is the critical exponent (1.21). Then, the temperature dependence of the
static susceptibility at the critical point is obtained:

χ0 ∼ β1−η . (3.55)

By using the Fourier transformation of the correlation function:

C(iωn) =
∫ β

0
dτ eiωnτC(τ), (3.56)

the critical behavior of the imaginary part of the dynamical susceptibility χ(ω) =
C(iωn → ω + iδ) is obtained:

Im [χ(ω)] ∼ ωη−1. (3.57)

Substituting this into Eq. (2.43), the thermal conductance at the critical point behaves
as κ ∼ Tc, where the exponent is given by:

c = s + η. (3.58)

The critical exponent η is a function of s and has been analyzed in previous theoret-
ical studies [37, 41]. The phase transition for 0 < s ≤ 0.5 belongs to the mean-field
universality class and leads to η = 1/2 (see Eq. (1.22)). For 0.5 < s < 1, η is a
nontrivial function of s and is evaluated by the ε-expansion (see Eq. (1.24)) [41]. In
summary, the exponent of the thermal conductance is given as follows:

c =


s +

1
2

, (0 < s ≤ 0.5),

1 − 1
2

ε − A(s)
3s

ε2 +O(ε3), (s > 0.5),
(3.59)

where ε = 2s − 1, A(s) = s [ψ(1)− 2ψ(s/2) + ψ(s)], and ψ(z) is the digamma func-
tion. The detail has been discussed using the numerical calculations in Ref. [41].
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Chapter 4

Continuous-time Quantum Monte
Carlo Method

While the analytical approaches discussed in the previous section are sufficiently
powerful for clarifying the mechanism of heat transport in a two-state system, the
detailed conditions justifying each approximation are not trivial. To understand
all features of heat transport, unbiased numerical simulation without any approx-
imation would be helpful. In this thesis, we employ the continuous-time Monte
Carlo (CTQMC) algorithm [59]. According to this algorithm, the partition function
is rewritten in path integral form with respect to an imaginary time path, σz(τ),
(kink representation) and the weight of this path is defined. We describe the way to
calculate the imaginary part of the dynamical susceptibility, Im [χ(ω)], by applying
the Monte Carlo method to the kink representation using the cluster update algo-
rithm [37]. In addition, we explain the way to determine the critical point of the
quantum phase transition for the sub-Ohmic case.

4.1 The kink representation of the spin-boson model

The partition function of the spin-boson model (2.13) is written in the imaginary
time path integral form as [15, 37] (for the detained derivation, see Appendix B)

Z = Tr
[
e−βH

]
=
∫

Dσz(τ) e−S[σz(τ)], (4.1)

S [σz(τ)] = −1
4

∫ β

0
dτ
∫ τ

0
dτ′ σz(τ)K(τ − τ′)σz(τ

′), (4.2)

where σz(τ) is a spin path defined on the imaginary time axis, Dσz(τ) indicates the
integral measure for all possible paths σz(τ), S [σz(τ)] is a influence function, and
K(τ) is a kernel defined as

K(τ) =
∫ ∞

0
dω I(ω)

cosh [ω(β/2 − τ)]

sinh(βω/2)
. (4.3)

The kernel has the symmetry K(τ) = K(β − τ) and asymptotic form K(τ) ∼ τ−(1+s)

for ω−1
c ≪ τ ≪ β/2. Note that the partition function (4.1) shows the equivalence

between the spin-boson model and the ferromagnetic Ising model with the long-
range spin-spin interaction K(τ) [60].

To apply the CTQMC method, we change over from the spin representation (4.1)
to the kink representation. As shown in Fig. 2.1 (a), the path σz(τ) is assigned by an
alternative configuration of kinks (jumps from σz = −1 to σz = +1) and anti-kinks
(jumps from σz = +1 to σz = −1) and described by the positions τi (i = 1, 2, . . . , 2n)
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of the kinks (qi = +1) and anti-kinks (qi = −1). Thus, the derivative of the spin path
reads

dσz(τ)

dτ
=

2n

∑
i=1

2qiδ(τ − τi), (4.4)

where n is the number of the pairs of kinks and anti-kinks. By substituting Eq. (4.4)
into (4.1), we obtain the kink representation of the partition function:

Z =
∞

∑
n=0

(
∆
2

)2n ∫ β

0
dτ2n

∫ τ2n

0
dτ2n−1 · · ·

∫ τ2

0
dτ1 exp

 2n

∑
⟨i,j⟩

qiqjW(τi − τj)

 , (4.5)

where W(τ) is obtained from the relation W ′′(τ) = −K(τ) as

W(τ) =
∫ ∞

0
dω

I(ω)

ω2
cosh (βω/2)− cosh [ω (β/2 − τ)]

sinh (βω/2)
. (4.6)

4.2 Calculation algorithm

We apply the CTQMC method to the partition function for the kink representa-
tion (4.5). The present CTQMC algorithm [59] employs a cluster-flip update similar
to that in the Swendsen–Wang cluster algorithm [61]. Employing this algorithm, we
can overcome the problem of the critical slowing down (the correlation time diverges
near the critical point of second-order phase transition). The cluster-flip update is
constructed as follows [37] (see Fig. 4.1):

1. Inserting new vertices with Poisson statics given by P(∆τ) = Γe−Γ∆τ with
mean value Γ−1 = 2/∆.

2. Connecting two segments (the line segments between neighboring vertices), si
and sj, with the probability

p[si, sj] = 1 − δσz(si),σz(sj)

[
1 − e−2A

]
, (4.7)

A = W(τi−1 − τj−1)− W(τi−1 − τj)

−W(τi − τj−1) + W(τi − τj), (4.8)

where σz(si) is the value of σz in the segment si, and positions of the vertices at
the two edges of the segment si are denoted by τi−1 and τi, respectively.

3. Flipping each segment cluster with probability 1/2.

4. Removing the redundant vertices within segments.

The Monte Carlo data presented in this paper typically represent averages over 103-
104 updates at low temperatures and 107–108 updates at high temperatures.

Using the CTQMC sampling method, we evaluate the spin correlation function
C(iωn) defined in Eq. (3.56) as follows:

C(iωn) =
1

βω2
n
⟨|ρ(iωn)|2⟩ , (4.9)
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FIGURE 4.1: The spin path on the imaginary time axis for the spin-
boson model and the CTQMC update process: (a) An initial spin
path, (b-i) the vertex representation of (a), (b-ii) insertion of new cuts
using the Poisson distribution, (b-iii) connection of segments with the
probability (4.7), (b-iv) flipping each cluster with probability 1/2, (b-
v) removal of redundant cuts, and (c) the final spin path after the
update.

where ⟨· · ·⟩ denotes the average obtained via CTQMC sampling and ρ(iωn) is the
Fourier transformation of ρ(τ) = dσz(τ)/dτ. From Eq. (4.4), ρ(iωn) is expressed as

ρ(iωn) =
2n

∑
j=1

2(−1)jeiωnτj . (4.10)

Then, to evaluate the thermal conductance (2.43) numerically, we need to calculate
as follows:

1. Calculating the Fourier transformation of the correlation function, C(iωn), from
Eq. (4.9).

2. Performing the analytical continuation

χ(ω) = C(iωn → ω + iδ). (4.11)

3. Evaluating the thermal conductance from Eq. (2.43).
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For using the co-tunneling formula (3.40), we need to calculate the static sus-
ceptibility χ0. Typically, a simple estimate χ0 ≃ 2/∆eff yields quantitatively correct
results. However, for the sub-Ohmic case, χ0 has non-trivial temperature depen-
dence, even at low temperatures. For this case, we numerically calculate the static
susceptibility, χ0, using the CTQMC method as follows:

χ0 = β ⟨σ̄2
z ⟩ , (4.12)

σ̄z =
1
β

∫ β

0
dτ σz(τ) =

2
β

2n−1

∑
j=0

(−1)jτj + 1. (4.13)

4.3 Analytical continuation

To obtain the dynamical susceptibility, χ(ω), we need to perform the analytical con-
tinuation (4.11). If the analytical expression for the Fourier transformation of the
correlation function, C(iωn) is clarified, we have only to replace iωn with ω + iδ.
However, since the Fourier transformation of the correlation function includes nu-
merical errors, the analytical continuation is difficult. In this thesis, we usually em-
ploy Padé approximation [62].

In Padé approximation, given values of the analytical function for upper half
plane F(z) at z = iωn (n = 0, 1, . . . , N) numerically, F(ω) is approximated by a
continued fractional function:

GN(ω) =
a1

1+
a2(ω − z1)

1+
· · · aN(ω − zN−1)

1
, (4.14)

where ai are coefficients determined by GN(ω). Using Thiele’s reciprocal difference
algorithm, we can determine coefficients ai as follows. We introduce a function

g1(zn) = F(zn), (4.15)

and define sequentially functions

gn(zn) =
gn−1(zn−1)− gn−1(ω)

(ω − zn−1)gn−1(ω)
. (4.16)

Then, coefficients ai are obtained by

ai = gi(zi). (4.17)

In this thesis, F(z) and GN(ω) correspond to the Fourier transformation of the cor-
relation function C(iωn) and dynamical susceptibility χ(ω), respectively.

For the weak coupling regime, however, Padé approximation yields poor results
since the imaginary part of the pole nearest to the real frequency axis is small. In this
case, we employ another approximation based on the fitting [63]. We assume that
the Fourier transformation if the correlation function as

C(iωn) ≃
aω3

0

(ωn + λ)2 + ω3
0
+ const, (4.18)

where a, ω0, and λ are the fitting parameters determined using the least-squares
method. It is easy to obtain the imaginary part of the dynamical susceptibility
Im [χ(ω)] using the fitting function (4.18) with optimized parameters. Note that
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FIGURE 4.2: An example of the Binder parameter analysis. The re-
sults for s = 0.6 and ∆/ωc = 0.01 are shown. (a) The Binder pa-
rameter as a function of the coupling constant α for different tem-
peratures. (b) Enlarged view of (a) around α = 0.08. Crosses rep-
resent the intersection points αβ,2β between the two neighboring in-
verse temperature, βωc and 2βωc, respectively. (c) The intersection
points of the Binder parameters. The red solid curve shows the fitted
quadratic function. The dashed horizontal line indicates the critical
value αc = 0.0615 obtained via the present analysis.

this fitting method works well for weak couplings since it is compatible with the
dynamic susceptibility for the sequential tunneling process.

4.4 Binder analysis

In this section, we describe how to determine the critical point of the quantum phase
transition for the sub-Ohmic case (0 < s < 1) [37]. To study this quantum phase
transition, we utilize the finite size scaling form for observable O close to the critical
point

⟨O⟩ (T, α) = βxO fO(βy∗t δ), (4.19)

where δ = (α − αc)/αc denotes the distance from the critical point, xO and fO are
the scaling exponent and scaling function of the observable O, respectively. The
exponent y∗t is related to the correlation length exponent ν, ξ ∼ δ−ν at δ ≃ 0, as
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follows [37, 41, 42]:

y∗t =


1
ν

, (0 < s ≤ 0.5),

1
ν
+

1
2
− s, (s > 0.5).

(4.20)

We introduce the Binder parameter, which is defined as follows:

B =
1
2

(
3 − ⟨σ̄4

z ⟩
⟨σ̄2

z ⟩
2

)
, (4.21)

where σ̄z = β−1
∫

dτ σz(τ) indicates the average obtained via the Monte Carlo sam-
pling. Since the Binder parameter has xB = 0, the critical point δ = 0 (α = αc)
is determined as the point for which the Binder parameter is independent of the
temperature at sufficiently low temperatures. In Fig. 4.2, we show an example of
the Binder analysis for s = 0.6 and ∆/ωc = 0.01. The curve of the Binder param-
eter for different temperatures has intersection points around α = 0.08, as shown
in Fig. 4.2 (a). To accurately determine the critical point, we consider the intersec-
tion points αβ,2β between the two neighboring inverse temperatures, β and 2β (see
Fig. 4.2 (b)), and plot the intersection points as a function of (βωc)−1, as shown in
Fig. 4.2 (c). By extrapolating αβ,2β in the limit (βωc)−1 → 0 using fitting to the
quadratic function of (βωc)−1 , the critical value αc = 0.0615 is obtained for this
parameter set.
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Chapter 5

Numerical Results and Comparison
with Analytical Formulas

In this chapter, we perform numerical simulations based on the CTMQC method
and compare the simulation results with the analytical formulas introduced in Sec-
tion 3. We separately consider the Ohmic (Section 5.1.1), sub-Ohmic (Section 5.1.2),
and super-Ohmic cases (Sections 5.1.3 and 5.1.4). The dynamics of the spin-boson
model has been studied by using various numerical methods. However, no sys-
tematic comparisons between analytical approximations and numerical simulations
have been performed in the context of heat transport near thermal equilibrium. This
comparison allows us to discuss the validity of various approximations critically.

In Section 5.2, we show numerical results near the quantum phase transition
point for the sub-Ohmic case and compare them with the analytical temperature
dependence of the thermal conductance discussed in Section 3.6.

5.1 Thermal conductance

5.1.1 The Ohmic case (s = 1)

In Fig. 5.1, we show the thermal conductances for α = 0.05, 0.1, 0.5, and 0.7 as func-
tions of temperature. We plot the graph using the normalized temperature kBT/∆eff
and the normalized thermal conductance κ/(kBγ∆eff), where ∆eff is the effective
tunneling amplitude defined in Eq. (3.11). As shown in Fig. 5.1, the numerical re-
sults fall on a universal scaling curve at each value of α regardless of the ratio ∆/ωc
(∆/ωc ≪ 1) obtained via this normalization. This universal behavior is characteris-
tic of the Kondo-like effect [29]. In Fig. 5.1 (c), we also show the exact solution (the
Toulouse point) for α = 0.5 (indicated by the brown dotted–dashed line) [15, 29, 63].
The agreement between the numerical results and the exact solution indicates the
correctness of the CTQMC simulation.

At low temperatures (kBT ≪ ∆eff), the numerical results agree well with those
of the approximate formula for the co-tunneling process (Eq. (3.41); indicated by
blue dashed lines in Fig. 5.1). In this regime, the thermal conductance is always
proportional to T3 (= T2s+1), which is consistent with the previous study [29].

At moderate (kBT ∼ ∆eff) and high temperatures (kBT ≫ ∆eff), the numerical re-
sults deviate from the co-tunneling formula and agree well with the NIBA (indicated
by black solid lines in Fig. 5.1). Note that the thermal conductance obtained by the
NIBA is proportional to T3−2α at low temperatures, as shown in Fig. 5.1. The NIBA
agrees well even with the low-temperature numerical results for the weak system-
reservoir coupling (α ≪ 1), whereas it deviates from these results as this coupling
becomes large. It is remarkable that the NIBA agrees well with the numerical results
at arbitrary temperatures for α ≪ 1, as shown in Fig. 5.1 (a).
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(b)(a)

(c) (d)

FIGURE 5.1: The temperature dependence of the thermal conduc-
tance for (a) α = 0.05, (b) 0.1, (c) 0.5, and (d) 0.7. The symbols indicate
the numerical results obtained using the CTQMC method. The black
solid, green dotted-dashed, blue dashed, and orange dotted lines rep-
resent the NIBA, sequential tunneling formula, co-tunneling formula,
and Markov approximation for incoherent tunneling, respectively. In
(c), the exact solution for the Toulouse point (α = 0.5) is indicated by
the brown dotted line.

In Fig. 5.1 (a) and (b), we also show the approximate formula for sequential tun-
neling (indicated by green dotted-dashed lines). As shown in this figure, the se-
quential tunneling formula at moderate temperatures (kBT ∼ ∆eff) agrees with the
numerical results of the weak system-reservoir coupling (α ≪ 1). This agreement is
consistent with the previous study [29]. However, note that the NIBA agrees with
the numerical results for a wider temperature region than the sequential tunneling
formula.

The Markov approximation for incoherent tunneling, indicated by orange dot-
ted lines in Fig. 5.1, clearly deviates from the numerical results for α = 0.05, 0.1,
and 0.7, indicating the importance of the non-Markovian properties of the system.
The Toulouse point (α = 0.5) is an exception, as shown in Figure 5.1 (c); the NIBA
coincides with the Markov approximation since at this point the self-energy in the
NIBA becomes independent of the frequency for the unbiased case [15]. A detailed
discussion on the failure of the Markov approximation is given in Section 5.1.2.

As described in Section 3.1, quantum phase transition occurs at αc = 1 for the
Ohmic case. For αc ≥ 1, the effective tunneling amplitude ∆eff becomes zero, indi-
cating complete destruction of the superposition of the two localized states. There-
fore, heat transport is induced by incoherent tunneling at arbitrary temperatures. In
Fig. 5.2, we show the thermal conductance for α = 1.0, 1.5, and 2.0 as a function of
temperature. As indicated by the black solid lines in the figure, the numerical results
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FIGURE 5.2: Temperature dependence of the thermal conductance.
The symbols with error bars indicate the numerical results obtained
using the CTQMC method for α = 1.0, 1.5, and 2.0 from top to bot-
tom. The black solid and orange dashed lines represent the NIBA and
the Markov approximation for incoherent tunneling.

(a) (b)

FIGURE 5.3: (a) The thermal conductance calculated using the
CTQMC method for s = 0.9, ∆/ωc = 0.01 and α = 0.1. (b) The sym-
metrized correlation function calculated using the CTQMC method
at kBT = ωc/64 for parameters same as those considered in (a). The
black solid, blue dashed, and orange dotted lines represent the NIBA,
co-tunneling formula, and Markov approximation for incoherent tun-
neling, respectively.

agree well with the NIBA formula for arbitrary temperatures. Note that for α ≥ 1,
the condition for the co-tunneling regime kBT ≪ ∆eff is never satisfied. In Fig. 5.2,
we also show the Markov approximation for incoherent tunneling (indicated by the
orange dashed line). For α ≥ 1, the difference between the NIBA and the Markov
approximation is not considerably large.

5.1.2 The sub-Ohmic case (0 < s < 1)

We first discuss the thermal conductance for the sub-Ohmic case wherein the system-
reservoir coupling is below the critical value for the quantum phase transition. In
Fig. 5.3 (a), we show the thermal conductance as a function of the temperature for
s = 0.9, ∆/ωc = 0.01, and α = 0.1, for which the ground state is delocalized
(α < αc(s, ∆)). At moderate and high temperatures, the numerical results agree well
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(a) (b)

FIGURE 5.4: Temperature behavior of the thermal conductance cal-
culated by a Monte Carlo simulation. The data represent results for
s = 0.6, ∆/ωc = 0.01, (a) α = 0.02, and (b) α = 0.1. The black
solid lines and the blue dashed line represents the NIBA and the co-
tunneling formula, respectively.

with the NIBA, which is shown by the black solid line. We note that the sequential-
tunneling formula cannot be applied to the sub-Ohmic case. At low temperatures
(kBT ≪ ∆eff), the numerical results agree well with the co-tunneling formula, show-
ing T2s+1-dependence.

We also show the results of the Markov approximation for incoherent tunneling
by the orange dotted line in Fig. 5.3 (a). The Markov approximation clearly deviates
from the numerical results. To understand the failure of the Markov approximation,
we show the numerical and analytical result of the symmetrized correlation function
S(ω) as a function of ω/ωc for kBT = ωc/64 in Fig. 5.3 (b). While the Markov ap-
proximation for the incoherent tunneling process agrees with the numerical results
at a low frequency, clear deviation is observed at higher frequencies; the numerical
result indicates that the high-frequency decay of S(ω) is much faster than that of the
Markov approximation, which is proportional to ω−2 (see Eq. (3.47)). We note that
the numerical result of S(ω) is well reproduced by the NIBA at arbitrary frequen-
cies. These observations indicate that the non-Markovian properties of the system
dynamics are important for obtaining correct thermal conductance results for the
sub-Ohmic case.

The quantum phase transition remarkably affects the temperature dependence
of the thermal conductance. In Fig. 5.4, we show the thermal conductance as a func-
tion of the temperature for s = 0.6 and ∆/ωc = 0.01, for which a quantum phase
transition occurs at α = αc = 0.0615. The detailed procedure for the determination
of the critical point is given in Section 4.4. Fig. 5.4 (a) shows the temperature de-
pendence in the delocalized regime (α = 0.02 < αc), for which ∆eff remains finite.
The numerical results agree well with the co-tunneling formula at low temperatures
and with the NIBA at moderate-to-high temperatures. This feature is the same as
that shown in Fig. 5.3. Fig. 5.4 (b) shows the temperature dependence in the lo-
calized regime (α = 0.1 > αc), for which ∆eff = 0. Reflecting the quantum phase
transition, the numerical results agree with the NIBA at arbitrary temperatures, as
shown in Fig. 5.4 (b). Since the condition for the co-tunneling regime, kBT ≪ ∆eff,
is never satisfied for ∆eff = 0, the thermal conductance does not show a universal
T2s+1-dependence due to the co-tunneling process at low temperatures.
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(a) (b)

FIGURE 5.5: Temperature behavior of the thermal conductance cal-
culated by Monte Carlo simulation. The data represent results for
s = 1.5, ∆/ωc = 0.05, (a) α = 0.1, and (b) α = 0.5. In both figures,
the black solid, blue dashed, green dotted-dashed, and orange dot-
ted lines represent the NIBA, co-tunneling formula, sequential tun-
neling formula, and Markov approximation for incoherent tunneling,
respectively.

5.1.3 The super-Ohmic case (1 < s < 2)

In Fig. 5.5, we show the numerical thermal conductance results obtained using the
CTQMC method as a function of temperature for s = 1.5. Here, the horizontal and
vertical axes are the normalized temperature kBT/∆eff and the normalized thermal
conductance κ/(kBγ∆eff(∆eff/ωc)2s−2), respectively, where ∆eff is the effective tun-
neling amplitude defined in Eq. (3.12). Note that there is no quantum transition for
the super-Ohmic case (s > 1); ∆eff is finite for arbitrary system-reservoir couplings.
At low temperatures (kBT ≪ ∆eff), the numerical results agree with the co-tunneling
formula (indicated by blue dashed lines) and show T2s+1-dependence, regardless
of the strength of the system-reservoir coupling. As shown in Fig. 5.5 (a), the nu-
merical results for α = 0.1 agree with the sequential tunneling formula at moderate
temperatures (kBT ∼ ∆eff) and with the NIBA at high temperatures. However, from
Fig. 5.5 (b), it is evident that the numerical results for α = 0.5 agree better with the
NIBA than with the sequential tunneling formula at moderate-to-high temperatures
(kBT ≳ ∆eff). This change can be explained by the crossover temperature T∗, which
separates the sequential (T < T∗) and incoherent (T > T∗) tunneling regimes (see
Eq. (3.38)). As the system-reservoir coupling α increases, the temperature region
for which the numerical results agree with the NIBA is widened since the crossover
temperature T∗ is lowered.

The Markov approximation for incoherent tunneling is indicated by orange dot-
ted lines in Fig. 5.5. The incoherent tunneling formula clearly deviates from numeri-
cal results, indicating the importance of the non-Markovian properties of the system
dynamics. The origin of this disagreement is the same as that for the sub-Ohmic case
(see Section 5.1.2).

5.1.4 The super-Ohmic case (2 ≤ s)

In Fig. 5.6, we show the numerical results of the thermal conductance obtained using
the CTQMC method as a function of the temperature for s = 2.0. The normalization
of the horizontal and vertical axes as well as the line types of the analytical for-
mula are same as those in Fig. 5.5. At low temperatures, the numerical results agree
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FIGURE 5.6: Temperature dependence of the thermal conductance
calculated using CTQMC simulation. The data represent the result for
s = 2.0, ∆/ωc = 0.05, and α = 0.5. The linetypes are same as those in
Fig. 5.5. The inset shows an enlarged graph in the high-temperature
region.

well with the co-tunneling formula and show T2s+1-dependence, regardless of the
strength of the system-reservoir coupling. In contrast to the case of 1 < s < 2, the
numerical results agree with the sequential tunneling formula at moderate-to-high
temperatures. This is reasonable since the crossover T∗ becomes of the order of ωc
for s = 2.0.

5.2 Quantum critical phenomena

For the sub-Ohmic case (0 < s < 1), a quantum phase transition occurs at zero
temperature when the reservoir-system coupling reaches the critical value αc, where
αc is a function of s and ∆/ωc as described in Section 3.1. In this section, we discuss
quantum critical phenomena near the transition point.

5.2.1 Phase diagram

For α < αc, the ground state is described by a coherent superposition of two wave
functions localized at each well (delocalized phase). For α > αc, the ground state
becomes two-fold degenerate because the coherent superposition is completely bro-
ken owing to the disappearance of quantum tunneling between the two wells (lo-
calized phase). The phase diagram of the spin-boson model determined by the
CTQMC simulations for ∆/ωc = 0.1 is shown in Fig. 5.7 (for details on determin-
ing the critical value, αc, see Section 4.4). The transition separating the two phases
is of second-order for the sub-Ohmic case (the empty squares) or of the Kosterlitz-
Thouless-type [49, 50] for the Ohmic case (the filled circle). This phase diagram is
consistent with previous numerical studies [37, 35].

5.2.2 Thermal conductance

In Fig. 5.8, we show the temperature dependence of the thermal conductance for
s = 0.5 and ∆/ωc = 0.1, where the critical system-reservoir coupling is αc = 0.1074.
Figs. 5.8 (a) and (b) show the delocalized-phase side (α ≤ αc) and the localized-phase
side (α ≥ αc), respectively. At the critical point, the thermal conductance exhibits
distinctive power-law behavior κ ∼ Tc, where c is the critical exponent, determined
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FIGURE 5.7: The phase diagram of the sub-Ohmic case for ∆/ωc =
0.1. The solid line indicates the second-order transition line separat-
ing the delocalized and localized phases. The empty squares indicate
the critical system-reservoir coupling that is numerically determined
for the sub-Ohmic case (0 < s < 1), whereas the filled circle repre-
sents the known transition point αc = 1 for the Ohmic case (s = 1).

FIGURE 5.8: Temperature dependence of the thermal conductance for
(a) α ≤ αc and (b) α ≥ αc. The plots represent the CTQMC simulation
results for s = 0.5 and ∆/ωc = 0.1, for which the critical system-
reservoir strength is αc = 0.1074.

by the nature of the quantum phase transition in Section 3.6. From Eqs. (3.50) and
(3.59), the critical exponent c = 1 is obtained for s = 0.5. This conclusion is consistent
with the critical exponent c = 1 obtained by the CTQMC simulation for s = 0.5 (see
Fig. 5.8).

As the system-reservoir coupling is reduced below the critical value (α < αc),
the temperature dependence of the thermal conductance deviates from one at the
critical point. For a sufficiently small system-reservoir coupling (e.g., α = 0.07 in
Fig. 5.8 (a)), the thermal conductance becomes proportional to T2s+1 at low temper-
ature, presumably for heat transport due to co-tunneling (3.41). The temperature
dependence of the thermal conductance also deviates as the system-reservoir cou-
pling is increased above the critical value (α > αc). Its temperature dependence
cannot be explained by a simple formula such as the NIBA up to α = 0.13.
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Chapter 6

Experimental Realization of
Sub-Ohmic Reservoirs

In this chapter, we discuss an experimental realization of sub-Ohmic reservoirs us-
ing a superconducting circuit. A previous theoretical study [43] has shown that a
spatially-uniform transmission line can realize a sub-Ohmic reservoir with s = 0.5.
For a controlled experiment of the quantum phase transition, however, it is favorable
to realize a sub-Ohmic reservoir with an arbitrary value of s. We propose a supercon-
ducting circuit to realize sub-Ohmic reservoirs for arbitrary s by introducing spatial
dependence to the circuit elements.

6.1 Superconducting circuit model

In this section, we show that a qubit coupled to two transmission lines reduces to
the spin-boson model (see Fig. 6.1 (a)). We consider two kinds of qubits, a flux qubit
(Section 6.1.2) and a charge qubit (Section 6.1.3). For simplicity, we first consider
uniform LC transmission lines and confirm that the qubits coupled to the transmis-
sion lines reduce to the Ohmic spin-boson model. To treat arbitrary transmission
lines, we derive general linear-response relations between the spectral density and
an impedance of the transmission lines for both types of qubits.

6.1.1 Transmission line

First, we explain that the transmission line, which consists of resistances, induc-
tances, and capacitances (see Fig. 6.1 (b)), is modeled as a set of harmonic oscillators.
For simplicity, we consider a uniform transmission line made from constant capaci-
tances C and inductances L without resistances. It is described by the Hamiltonian

H =
N

∑
j=1

Q2
j

2C
+

N

∑
j=2

(ϕj − ϕj−1)
2

2L
. (6.1)

Here we introduced a flux operator ϕj(t) by dϕj(t)/dt ≡ Vj(t), where Vj is a volt-
age drop at the jth capacitance. The charge operator Qj is the canonical conjugate
variable to the flux operator and these operators satisfy the canonical commutation
relation: [ϕj, Qk] = iδj,k. In the continuous limit, N → ∞, the Hamiltonian (6.1) is
approximated as follows:

H =
∫ d

0
dx

[
Q(x)2

2c
+

1
2l

(
∂ϕ(x)

∂x

)2
]

, (6.2)
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=

FIGURE 6.1: (a) A superconducting circuit composed of (a-i) flux or
(a-ii) charge qubits and two transmission lines. (b) The circuit of
the transmission lines proposed to realize the sub-Ohmic spin-boson
model, consisting of resistances Rj, inductances Lj, and capacitances
Cj.

where d, c, and l are the length of the transmission line, the capacitance and induc-
tance per length, respectively. Expanding ϕ(x) in the modes {ϕk}

ϕ(x) = ∑
k

ϕk fk(x), (6.3)

where fk(x) satisfies∫ d

0
dx fk(x) fk′(x) = dδk,k′ ,

∫ d

0
dx

∂ fk(x)
∂x

∂ fk′(x)
∂x

= dk2δk,k′ , (6.4)

the Hamiltonian is rewritten follows in terms of ϕk and its canonical conjugate vari-
able Qk as

H = ∑
k

(
1

2dc
Q2

k +
dcω2

k
2

ϕ2
k

)
, (6.5)
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where ωk = k/
√

lc. Since ϕk and Qk are expressed by ϕk = αkak + α∗
k a†

k and Qk =
βkak + β∗

k a†
k , where ak (a†

k) is an annihilation (a creation) operator of boson, respec-
tively, the effective Hamiltonian is written as

H̃ = ∑
k

(
|βk|2

dc
+

dcω2
k |αk|2
2

)(
a†

k ak +
1
2

)
+ ∑

k

[(
β2

k
2dc

+
dcω2

k
2

α2
k

)
a2

k + h.c.

]
. (6.6)

Choosing appropriate αk and βk under the condition αkβ∗
k − α∗

k βk = i from the canon-
ical commutation relation, the effective Hamiltonian (6.6) reduces to a set of the har-
monic oscillators with the frequency ωk.

6.1.2 Flux qubit

We consider a flux qubit coupled to two transmission lines (or two junction arrays),
as shown in Fig. 6.1 (a-i). We first consider a uniform transmission line with constant
capacitance and inductance (Cj = C, Lj = L) while neglecting resistance (Rj = 0).

The Hamiltonian of the present circuit is given by

H = HS + HB + HI, (6.7)

HS =
3

∑
k=1

[
Q2

J,k

2CJ,k
− EJ,k cos(ϕJ,k/ϕ0)

]
, (6.8)

HB = ∑
ν

N

∑
j=1

[
Q2

ν,j

2C
+

(ϕν,j+1 − ϕν,j)
2

2L

]
, (6.9)

HI =
(ϕa − ϕL,1)

2

2L1
+

(ϕR,1 − ϕb)
2

2L1
, (6.10)

where HS, HB (= ∑ν HB,ν), and HI (= ∑ν HI,ν) describe the flux qubit, the trans-
mission lines, and the system-reservoir coupling, respectively, and ϕ0 = h̄/2e is the
flux quantum. The flux qubit comprises three Josephson junctions with Josephson
energies EJ,k (k = 1, 2, 3), and the charge and flux operator of the k-th Josephson
junction are denoted by QJ,k and ϕJ,k, respectively. Similarly, the charge and flux
operators of the transmission line (see Fig. 6.1 (b)) are denoted by Qν,j and ϕν,k, re-
spectively. These operators satisfy the exchange relations [ϕJ,k, QJ,k′ ] = iδk,k′ and
[ϕν,j, Qν′,j′ ] = iδj,j′δν,ν′ , respectively. The flux operators at the two sides of the flux
qubit are expressed by ϕa and ϕb (see Fig. 6.1 (a-i)).

To make the flux qubit, the area of one junction is reduced by a factor of α (EJ,1 =
EJ,3 = EJ , CJ,1 = CJ,3 = CJ , EJ,2 = αEJ , and CJ,2 = α−1CJ). Then, the Hamiltonian of
the flux qubit Hamiltonian (6.8) can be rewritten as [17, 32]

Hqb =
Q2

J,+

2CJ,+
+

Q2
J,−

2CJ,−
+ V(ϕJ,+, ϕJ,−), (6.11)

V(ϕJ,+, ϕJ,−) = −EJ [2 cos(ϕJ,+/2ϕ0) cos(ϕJ,−/2ϕ0)

+ α cos ((Φext − ϕJ,−)/2ϕ0)] , (6.12)

where ϕJ,± = (ϕJ,1 ±ϕJ,3)/2, its conjugate operator is denoted by QJ,±, and V(ϕJ,+, ϕJ,−)
is the Josephson energy that plays the role of the potential energy. When the mag-
netic flux through the loop is tuned to be half of the flux quantum (Φext = ϕ0/2),
the Josephson energy, V(ϕJ,+, ϕJ,−), has two energy minima on the line ϕJ,+ = 0.
Due to quantum tunneling effects, there is an energy splitting ∆ between the ground
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state and the first-excited state. Since these lowest two eigenstates are well sepa-
rated from the other eigenstates, we can truncate the system into the lowest two
eigenstates, thus leading to the two-state system Hamiltonian (6.8). The wavefunc-
tions of the lowest two states are described as |σx = ±1⟩ = (|↑⟩ ± |↓⟩)/

√
2, where

|↑⟩ and |↓⟩ are the two-dimensional wavefunctions localized at the two potential
energy minima, respectively. Introducing the new variables ϕ± = ϕR,1 ± ϕL,1 and
Φ± = ϕb ± ϕa and using ϕJ,+ ∝ Φ+ ≃ 0, the system-reservoir coupling (6.10) is
rewritten as HI = −ϕ−Φ−/2L1. After truncation into the two-state system, we ob-
tain:

HI = − ϕ−
2L1

ϕ0 ⟨φ−⟩ σz, (6.13)

where ⟨↑|Φ− |↑⟩ ≡ ϕ0 ⟨φ−⟩, ⟨↓|Φ− |↓⟩ ≡ −ϕ0 ⟨φ−⟩, and ⟨↑|Φ− |↓⟩ = ⟨↓|Φ− |↑⟩ =
0.

For simplicity, we consider the continuous limit ∆x → 0 while keeping the length
of the transmission line, d = N∆x, constant, where ∆x is the size of each elementary
island. Then, the system-reservoir coupling can be rewritten by [17]

HI = −1
l

∂ϕ(x)
∂x

∣∣∣∣
x=0

ϕ0 ⟨φ−⟩ σz. (6.14)

The transmission line Hamiltonian (6.9) can be The flux, ϕ(x), can be expressed by

ϕ(x) = ∑
k

eikx
√

Lt

1√
2cωk

(
bk + b†

k

)
, (6.15)

where bk and b†
k are bosonic annihilation and creation operators, respectively. Then,

the Hamiltonians for the transmission lines and the system-reservoir coupling can
be rewritten as follows:

HB = ∑
k

ωkb†
k bk, (6.16)

HI = −σz

2 ∑
k

λk

(
b†

k + bk

)
, (6.17)

λk =
2ϕ0 ⟨φ−⟩

vl
√

Lt

√
ωk

c
, (6.18)

where v = 1/
√

lc is the speed of light in the transmission line. This model corre-
sponds to the spin-boson model with an Ohmic reservoir.

Now, we discuss the general linear response relation. The electric current opera-
tor at the position x is defined by I(x) = l−1∂ϕ(x)/∂x and is calculated at x = 0:

I0 ≡ I(x = 0) = ∑
k

iλk

2ϕ0 ⟨φk⟩

(
b†

k + bk

)
. (6.19)

From Eqs. (2.17), (6.17), (6.18), and (6.19), the spectral density is written as

I(ω) = −4ϕ2
0 ⟨φ−⟩2

π
Im
[

GR
I0
(ω)

]
, (6.20)

where GR
I0
(ω) is the Fourier transformation of the current-current correlation func-

tion defined by GR
I0
(t) = −iθ(t) ⟨[I0(t), I0(0)]⟩.
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A current I0(ω) is induced by applying an electric field E(r, ω) which can be
treated as a perturbation

Hext(ω) = − i
ω

∫
dr i(r) · E(r, ω), (6.21)

where i(r, ω) is the current density operator. Using the linear response theory, the
current can be expressed as a linear response to the perturbation as follows [64]:

I0(ω) =
∫

dσr er · i(r, ω) =
∫

dσrdσr′dr′ er ·
i
ω

GR
i(r)i(r′)(ω)er′E(r′, ω), (6.22)

where GR
i(r)i(r′)(t − t′) = −iθ(t − t′) ⟨[i(r, t), i(r′, t′)]⟩. Note that we have employed a

coordinate system (r, σr), where r is a coordinate parallel to the electric field, E(r, ω) =
erE(r, ω), and σr are coordinates on the plane perpendicular to the r-direction. Since
the current is not dependent on r due to the current conservation, the linear response
can be rewritten by

I0(ω) =
∫

dr′
i
ω

GR
I0
(ω)E(r′, ω), (6.23)

In addition, the current through a circuit with an impedance Z(ω) can be also writ-
ten as

I0(ω) = G(ω)V(ω) =
∫

dr G(ω)E(r, ω). (6.24)

Comparing Eq. (6.23) and Eq. (6.24), we obtain the linear response relation between
the current-current correlation function and the total impedance of the transmission
lines:

1
Z(ω)

=
i
ω

GR
I0
(ω). (6.25)

Substituting Eq. (6.25) into (6.20), the spectral density can be expressed by the joint
impedance of the two transmission lines (Zs(ω) = ∑ν Zν(ω)) as follows:

I(ω) = ∑
ν

Iν(ω) =
4ϕ2

0 ⟨φ−⟩2

π
I0(ω), (6.26)

I0(ω) = ωRe
[

Zs(ω)−1
]

. (6.27)

Although we have derived them for a special case, i.e., the case of uniform transmis-
sion lines without damping, Eqs. (6.26) and (6.27) hold for arbitrary circuits of the
transmission lines because we expect that the coupling form I0Φ− does not change
and the details of the transmission lines are included only in its impedance Zν(ω).

6.1.3 Charge qubit

We consider a charge qubit coupled to two transmission lines as shown in Fig. 6.1 (a-
ii). As in the case of the flux qubit (Section 6.1.2), we first consider a uniform trans-
mission line with constant capacitance and inductance.
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FIGURE 6.2: Eigeneneries of the charge qubit Hamiltonian as a func-
tion of the number of the offset charge ng. At the charge sweet spots
(the vertical dashed lines), the two lowest energy states are separated
from others and the energy splitting between them is EJ .

The Hamiltonian of the circuit composed of the charge qubit and transmission
lines is given by

H = HS + HB + HI, (6.28)
HS = EC(n − ng)

2 − EJ cos(ϕ/ϕ0), (6.29)

HI =
CJ

CJ + Cg
QV0, (6.30)

where HS and HI (= ∑ν HI,ν) describe the charge qubit and the system-reservoir
coupling, respectively, and HB (= ∑ν HB,ν) is the Hamiltonian of the transmission
lines given in Eq. (6.9) (or Eq. (6.16)). The charge qubit comprises a Josephson junc-
tion with Josephson energies EJ and the flux drop ϕ, and has the Coulomb energy
EC = 2e2/(CJ + Cg) and the offset charge 2eng. The operator n is the number of
Cooper pairs transferred through the Josephson junction (Q = 2en). The number
operator and flux operator satisfy the exchange relation [ϕ, n] = iϕ0. Considering a
small Josephson junction with EJ ≪ EC and setting the number of the offset charge
as ng = 0.5 (see Fig. 6.2), two lowest charge states n = 0 and n = 1 are well sep-
arated from others, and this system is reduced to the two-state system (2.8) with
energy splitting ∆ ∼ EJ . The wavefunctions of the lowest two states are described
as |σx = ±1⟩ = (|n = 0⟩ ± |n = 1⟩)/

√
2. After truncation into the two-state system,

the system-reservoir coupling Hamiltonian is rewritten as

HI = −σz

2
CJ

CJ + Cg
2|e|V0. (6.31)

Considering the continuous limit, the voltage operator V0 is given by

V0 ≡ ∂ϕ(x = 0, t)
∂t

∣∣∣∣
t=0

. (6.32)
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Using the expression of the flux in the transmission line:

ϕ(x = 0, t) = ∑
k

i√
Lt

1√
2cωk

(
bk(t)− b†

k (t)
)

= ∑
k

i√
Lt

1√
2cωk

(
bke−iωkt − b†

k eiωkt
)

, (6.33)

the voltage operator can be rewritten as

V0 = ∑
k

√
ωk

2Ltc

(
bk + b†

k

)
. (6.34)

Then, the Hamiltonian for the system-reservoir coupling can be rewritten as

HI = −σz

2 ∑
k

λk

(
bk + b†

k

)
, (6.35)

λk =
CJ

CJ + Cg
2|e|
√

ωk

2Ltc
. (6.36)

This model corresponds to the Ohmic spin-boson model.
Now, we consider the voltage-voltage correlation function defined by GR

V0
(t) =

−iθ(t) ⟨[V0(t), V0(0)]⟩ and obtain the relation between the spectral density and the
impedance of the transmission lines in the same way as the flux qubit case. From
Eq. (6.34), the Fourier transformation of the voltage-voltage correlation function is
related with the spectral density as follows:

I(ω) = −4|e|2
π

(
CJ

CJ + Cg

)2

Im
[

GR
V0
(ω)

]
. (6.37)

Using the linear response relation (6.25) and GR
V0
(ω) = Z(ω)2GR

I0
(ω), we obtain the

spectral density in terms of the impedance

I(ω) = ∑
ν

Iν(ω) =
4|e|2

π

(
CJ

CJ + Cg

)2

I0(ω), (6.38)

I0(ω) = ωRe
[
Zp(ω)

]
, (6.39)

where Zp(ω)−1 = ∑ν Zν(ω)−1.

6.2 The spectral densities

To realize a sub-Ohmic reservoir with an arbitrary exponent, s, we propose a su-
perconducting circuit, as shown in Fig. 6.1 (b). The circuit comprises resistances Rj ,
inductances Lj, and capacitances Cj (j = 1, 2, · · · , N). For simplicity, we assume that
the two transmission lines are constructed by the same circuit. The joint impedance
of the two transmission lines is then calculated as Zs(ω) = 2Z1(ω) for the case of the
flux qubit and Zp(ω)−1 = 2Z1(ω)−1 for the case of the charge qubit, where Zj(ω)
(j = 1, 2, · · · , N) includes from jth to Nth islands and is given by a recurrence
relation:

Zj(ω) = Rj + iωLj +
1

Zj+1(ω)−1 + iωCj
, (6.40)



54 Chapter 6. Experimental Realization of Sub-Ohmic Reservoirs

FIGURE 6.3: The spectral density of the superconducting circuit for
s = 0.5 and 0.25, corresponding to (n, p, m) = (2, 0, 2) and (6, 0, 6). The
circuit parameters are set to N = 104, R0 = 1 kΩ, L0 = 13 nH, and
C0 = 1 pF. Each circuit element has 1% relative randomness.

with ZN+1(ω)−1 = 0. In the following, we assume that circuit elements have spatial
dependence:

Rj = R0

(
j

N

)n

, Lj = L0

(
j

N

)p

, Cj = C0

(
j

N

)m

. (6.41)

where n, p, and m are non-negative real numbers.

6.2.1 Flux qubit

We assume that the exponents of the circuit elements (see Eq. (6.41)) are set as

n ≥ 0, p = 0, m ≥ 0. (6.42)

We show the spectral density, I0(ω) = ωRe[Zs(ω)−1] (see Eq. (6.27)), of the super-
conducting circuit in Fig. 6.3 for (n, p, m) = (2, 0, 2) and (6, 0, 6). The parameters are
set to R0 = 1 kΩ, L0 = 13 nH, C0 = 1 pF, and N = 104 and referred to experimental
studies on Josephson junction arrays [65]. In Fig. 6.3, we added 1% relative random-
ness for each circuit element to introduce tolerance to circuit parameter fluctuations.

We determined that the spectral density is approximately proportional to ωs in
a certain range of the frequency with the exponent 0 < s < 1. This indicates that
the present circuit can realize a sub-Ohmic reservoir with an arbitrary value of s.
Certainly, the analytical calculation concludes:

I(ω) ∝ ω2/(m+2), (ω∗ ≪ ω ≪ ωc). (6.43)

The detailed calculation is given in Appendix D.1. This result is in good agreement
with Fig. 6.3; m = 2 and 6 correspond to s = 0.5 and 0.25, respectively. The lower
frequency limit for the sub-Ohmic spectral density, ω∗, is calculated as follows:

ω∗ =

[( m
2N

)2n Rm+2
0

Cn
0 Lm+n+2

0

]1/(m+2n+2)

. (6.44)
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FIGURE 6.4: The spectral density of the superconducting circuit for
s = 0.5 and s = 0.25, corresponding to (n, p, m) = (4, 2, 0) and (12, 6, 0).
The circuit parameters are set to N = 104, R0 = 0.1 kΩ, L0 = 13 nH,
and C0 = 0.01 pF. Each circuit element has 1% relative randomness.

Therefore, the exponent n for the resistance (see Eq. (6.41)) controls the lower limit
of the sub-Ohmic spectral density. In contrast, the higher frequency limit, ωc, is a
complex function of the circuit parameters.

6.2.2 Charge qubit

We set the exponents of the circuit elements as

n ≥ p ≥ 0, m = 0. (6.45)

In Fig. 6.4, we show the spectral density, I0(ω) = ωRe[Zp(ω)] (see Eq. (6.39)), of
the superconducting circuit for (n, p, m) = (4, 2, 0) and (12, 6, 0) with R0 = 0.1 kΩ,
L0 = 13 nH, C0 = 0.01 pF, and N = 104, and added 1% relative randomness for each
circuit element to introduce tolerance to circuit parameter fluctuations.

From Fig. 6.4, the transmission line realizes a sub-Ohmic reservoir with arbitrary
exponent 0 < s < 1 in a certain range of the frequency. Calculating the trans-
mission line with spatial dependent elements (6.45) analytically (for detail, see Ap-
pendix D.2), we obtain the frequency dependence as

I(ω) ∝ ω2/(p+2), (ω∗ ≪ ω ≪ ωc). (6.46)

This analytical result is consistent with Fig. 6.4; p = 2 and 6 correspond to s = 0.5
and 0.25, respectively. The lower frequency limit, ω∗, is calculated as follows:

ω∗ =

[( p
2N

)2(n−p) Rp+2
0

Cn−p
0 Ln+2

0

]1/(2n−p+2)

. (6.47)

The lower frequency limit is controlled by the exponent n for the resistance. As in
the case of the flux qubit, the higher frequency limit, ωc, is a complex function of the
circuit parameters.
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FIGURE 6.5: The spectral density function of the superconducting cir-
cuit for s = 0.25 corresponding to (n, p, m) = (2, 0, 0). The circuit pa-
rameters are set as N = 102, R0 = 0.1 mΩ, and C0 = 0.1 mF. The red
and blue lines represent cases that each circuit element has 0% and
10% relative randomnesses, respectively.

6.2.3 Charge qubit (0 < s ≤ 0.5)

There is another way to realize a sub-Ohmic reservoir with the restricted exponent
0 < s ≤ 0.5 using the charge qubit. To realize the transmission line, we set the
exponent of circuit elements as

n ≥ 0, p = 0, m = 0. (6.48)

In Fig. 6.5, we show the spectral density, I0(ω), of the transmission line for (n, p,
m) = (2, 0, 0) with 0% and 10% relative randomness for each circuit element. The
parameters are set to N = 102, R0 = 0.1 mΩ, and C0 = 0.1 mF.

As shown in Fig. 6.5, the present circuit realizes the sub-Ohmic reservoir in a
certain range of the frequency. Compared with the above two cases (Sections 6.2.1
and 6.2.2), the present circuit (6.48) can realize a sub-Ohmic reservoir with a smaller
number of islands, N, and has a higher tolerance for randomness. By the analytical
calculation in Appendix D.3, we obtain the frequency dependence of the spectral
density:

I(ω) ∝ ω1/(n+2), (ω∗ ≪ ω ≪ ωc). (6.49)

This result is in good agreement with Fig. 6.5; n = 2 corresponds to 0.25. However,
from analytical calculation (6.49), the exponent of the spectral density is restricted to
0 < s ≤ 0.5. In this case, the lower frequency limit, ω∗, and the higher frequency
limit, ωc, can be calculated as follows:

ω∗ =
1

R0C0

( n
2N

)2
(

1 +
2
√

2
n

)n+2

, (6.50)

ωc =
1

R0C0

(
2N
n

)n

. (6.51)
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Chapter 7

Summary

We systematically studied heat transport via a local two-state system for all types of
reservoirs, i.e., for the Ohmic case (s = 1), sub-Ohmic case (s < 1), and super-Ohmic
case (s > 1) near equilibrium. We used the exact expression for the thermal conduc-
tance obtained from the Keldysh formalism and studied it using both analytical and
numerical methods within the linear response.

We showed that heat transport via a two-state system can be described by three
types of transport processes: sequential tunneling, co-tunneling, and incoherent tun-
neling. Sequential tunneling is a transport process occurred by a combination of
photon (or phonon) absorption and emission, and the temperature dependence of
the thermal conductance is the exponential decrease as the temperature is lowered.
Co-tunneling is a transport process via a virtual excitation in the local two-state sys-
tem, and the thermal conductance behaves as κ ∝ T2s+1 at low temperatures. Inco-
herent tunneling is a transport process induced by a stochastic transition between
two localized wavefunctions. In this thesis, we gave the condition for the sequential
tunneling using the quantum master equation and showed that the sub-Ohmic case
does not satisfy this condition. We also pointed out that the Markov approximation
yielded incorrect results for the thermal conductance in the incoherent tunneling
regime since the non-Markovian properties are important. However, for the inco-
herent tunneling regime, the NIBA yielded correct results.

We used a continuous-time Monte Carlo algorithm and systematically compared
the numerical results with those of the analytical approximation formulas. We found
that all numerical results were well reproduced by one of three formulas, i.e., the
sequential tunneling formula, co-tunneling formula, or NIBA. We summarize the
relevant transport mechanisms for each regime in Table 7.1. We also showed that
for 0 < s ≤ 1, the quantum phase transition between the delocalized and localized
phases strongly affected the temperature dependence of the thermal conductance.
For the delocalized phase (α < αc), the thermal conductance is well described by the
co-tunneling formula at low temperatures and by NIBA at moderate-to-high temper-
atures. On the contrary, for the localized phase (α ≫ αc), the NIBA holds arbitrary
temperatures.

Furthermore, we studied quantum critical phenomena (QCP) in the sub-Ohmic
case from the viewpoint of heat transport. By the continuous-time quantum Monte
Carlo simulations, we showed that the thermal conductance at the critical point
(α = αc) has a characteristic power-law temperature dependence determined by
the nature of the quantum phase transition. We also clarified the means by which
the critical exponent of the thermal conductance is related to other critical exponents
discussed in previous theoretical studies.

Finally, we proposed a superconducting circuit with the flux or charge qubits that
realize the sub-Ohmic spin-boson model. Giving the spatial dependence to circuit el-
ements in transmission lines (or Josephson junction arrays), the sub-Ohmic spectral
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TABLE 7.1: Summary of the relevant transport process. The last
column shows the temperature dependences of the thermal conduc-
tance. The temperature dependence of the NIBA is complex in gen-
eral, and the symbol (∗) indicates the high-temperature limit. Near
the quantum critical point for the sub-Ohmic case, the thermal con-
ductance shows a quantum critical phenomena (QCP). The critical
exponent c is a function of s (see Eq. (3.59)).

Exponent Condition Transport Process Dependence
0 < s < 1 α < αc, kBT ≪ ∆eff Co-tunneling T2s+1

(sub-Ohmic) α < αc, kBT ≳ ∆eff Incoherent tun.
α > αc, arbitrary temp. Incoherent tun.
α = αc, kBT ≪ ∆eff QCP Tc

s = 1 α < 1, kBT ≪ ∆eff Co-tunneling T3

(Ohmic) α < 1, kBT ≳ ∆eff Incoherent tun. T2α−1 (∗)
α > 1, arbitrary temp. Incoherent tun. T2α−1 (∗)

1 < s < 2 kBT ≪ ∆eff Co-tunneling T2s+1

(super-Ohmic) ∆eff ≲ kBT ≲ kBT∗ Sequential tun. e−∆eff/kBT/T2

kBT > kBT∗ Incoherent tun.
2 ≤ s kBT ≪ ∆eff Co-tunneling T2s+1

(super-Ohmic) kBT ≳ ∆eff Sequential tun. e−∆eff/kBT/T2

density with an arbitrary value of the exponent s is realized in a certain frequency
range.

The present study provides a theoretical basis for describing heat transport via
nano-scale objects. The present study also provides a new platform for experiments
attempting to access quantum phase transitions directly upon measuring heat trans-
port in mesoscopic devices.
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Appendix A

Instanton Method

In this appendix, we derive the tunneling amplitude for the double-well potential
systems, Eq. (2.7), using an instanton method. In the imaginary-time path-integral
formalism, the transition amplitude from q(−τ0/2) = qi to q(τ0/2) = q f is written
as

⟨q f | e−HSτ0 |qi⟩ = N
∫

Dq(τ) e−S(E)[q(τ)], (A.1)

where S(E)[q(τ)] is the Euclidean action:

S(E)[q(τ)] =
∫ +τ0/2

−τ0/2
dτ

{
M
2

[
q(τ)
dτ

]2

+ V[q(τ)]

}
, (A.2)

where N is a normalization factor, and
∫
Dq(τ) denotes integration over all path

q(τ). Now suppose the semi-classical approximation, in which the action takes large
values than the Plank constant (note that h̄ is set as unity in this thesis). In this
situation, the integral (A.1) is dominantly determined by the stationary solution and
fluctuation of the paths around it. The stationary solution X(τ) is obtained from the
stationary condition δS(E)[X(τ)] = 0 as

−M
d2X(τ)

dτ2 +
dV[X(τ)]

dX(τ)
= 0. (A.3)

This equation corresponds to the classical equation of motion of particle under the
upside-down potential, −V(q). If there is one stationary point, we can estimate the
exponential factor of the transition amplitude as follows:

⟨q f | e−HSτ0 |qi⟩ = N
∫

Dq(τ) e−S(E)[q(τ)] ∼ e−S(E)
0 , (A.4)

where S(E)
0 = S(E)[X(τ)] is the action of the stationary solution.

Next, we consider the pre-exponential factor of the transition amplitude. The
path q(τ) of the integral in Eq. (A.1) is expanded around the stationary solution as

q(τ) = X(τ) + ∑
n

cnxn(τ), (A.5)

where xn(τ) is a complete set of orthonormal functions that vanish at the boundary:∫ +τ0/2

−τ0/2
dτ xn(τ)xm(τ) = δm,n, xn(±τ0/2) = 0. (A.6)
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Thus, the integral measure can be written in the form∫
Dq(τ) = ∏

n

∫ dcn√
2π

. (A.7)

Expanding the Euclidean action up to the second order around the stationary point

S(E)

[
X(τ) + ∑

n
cnxn(τ)

]
− S(E)

0 [X(τ)]

=
∫ +τ0/2

−τ0/2
dτ

(
∑
n

cnxn(τ)

)[
−M

2
d2

dτ2 +
1
2

d2V[X(τ)]

dX(τ)2

](
∑
n

cnxn(τ)

)
.

(A.8)

We note that the first-order terms with respect to xn(τ) vanish as X(τ) is the sta-
tionary solution. Here, we assume that {xn(τ)} are eigenfunctions of the differential
operator −Md2/dτ2 + V ′′[X(τ)]:[

−M
d2

dτ2 +
d2V[X(τ)]

dX(τ)2

]
xn(τ) = ϵnxn(τ), (A.9)

where {ϵn} is the corresponding eigenvalues. Then, the Euclidean action is trans-
formed into the diagonal form

S(E)

[
X(τ) + ∑

n
cnxn(τ)

]
= S(E)

0 +
1
2 ∑

n
ϵnc2

n. (A.10)

Performing Gaussian integration, we obtain the transition amplitude

⟨q f | e−HSτ0 |qi⟩ = e−S(E)
0 N ∏

n
ϵ−1/2

n (A.11)

= e−S(E)
0 N

{
det

[
−M

d2

dτ2 +
d2V[X(τ)]

dX(τ)2

]}−1/2

. (A.12)

In the following, we calculate the exponential and pre-exponential factors concretely
in the double-well potential (2.5).

A.1 Exponential factor

Let us first consider the stationary solution for the double-well potential system. The
classical equation of motion (A.3) has not only trivial solutions

X(τ) = ±q0

2
, (A.13)

but also nontrivial solutions which connect the points ±q0/2. These nontrivial solu-
tions are crucial to calculate the quantum tunneling amplitude. In the limit τ0 → ∞,
these nontrivial solutions of Eq. (A.3) are

X±(τ) = ±q0

2
tanh

[
ω0(τ − τc)

2

]
, (A.14)
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FIGURE A.1: Schematic of the instanton and anti-instanton. The in-
stanton is the imaginary time path from the point −q0/2 to +q0/2 in
the upside-down potential V[q(τ)] = −V[q(t)]. The anti-instanton is
the imaginary time path opposite to the instanton.

where τc is the arbitrary parameter. These solutions, X+(τ) and X−(τ) , are called
‘instanton’ and ‘anti-instanton’, respectively (see Fig. A.1). Using the instanton or
anti-instanton solutions, we obtain the action S(E)

0

S(E)
0 = S(E)[X±(τ)] =

16Vb

3ω0
. (A.15)

This exponential factor is consistent with one derived from the WKB approxima-
tion [66]. Note that τc may take an arbitrary time, and the action of the instanton,
S(E)

0 , does not depend on the τc, reflecting the invariance with respect to time transla-
tion. Each concrete solution (A.14) has a definite position with respect to the origin,
and thus there exits an infinite family of solutions distributed along the imaginary-
time axis.

A.2 Pre-exponential factor

First, we consider the single-instanton contribution to the transition amplitude, Eq. (A.1),
and calculate the pre-exponential factor of it. The transition amplitude (A.12) is
rewritten as

⟨±q0/2| e−HSτ0 |∓q0/2⟩single = Ne−S(E)
0

[
det

(
−M

d2

dτ2 + ω2
0

)]−1/2

×
{

det
[
−Md2/dτ2 + V ′′[X(τ)]

]
det

(
−Md2/dτ2 + ω2

0

) }−1/2

.(A.16)

We multiplied and divided by the determinant for harmonic oscillator, which is cal-
culate easily as [66]

N
[

det
(
−M

d2

dτ2 + ω2
0

)]−1/2

=

√
Mω0

2π sinh(ω0τ0)
(A.17)

∼
√

Mω0

π
e−ω0τ0/2, τ0 → ∞. (A.18)
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Substituting the explicit expression X+(τ) (A.14) into V ′′[X(τ)], we obtain the eigen-
value equation for determinant in the numerator:{

− d2

dτ2 + ω2
0

[
1 − 3

2
1

cosh2(ω0(τ − τc)/2)

]}
xn(τ) = ϵxn(τ) (A.19)

It can be regarded as a certain Schorödinger equation. Under the boundary con-
dition xn(±τ0/2) = 0, τ0 → ∞, Eq. (A.19) has discrete spectrum for ϵ < ω0 and
continuous spectrum for ϵ > ω0 [67]. There are two discrete levels; one has the
eigenvalue ϵ1 = (3/4)ω2

0, and the other ϵ0 = 0. The eigenfunction of the latter
is [67]

x0(τ) =

√
3ω0

8
1

cosh2(ω0(τ − τc)/2)
. (A.20)

The naive integration with respect to the coefficient c0 (A.7) (the zero mode) gives
divergence since the action is independent of c0. However, we can overcome this
divergence by changing the integration over c0 into τc. Note that the eigenfunction
x0(τ) is proportional to dX(τ)/dτ. This means that the change of c0 can be absorbed
into the translational shift of the instanton solution along the imaginary-time axis.
When c0 is changed into c0 + ∆c0, the change of the path, ∆q(τ), is given as ∆q(τ) =
x0(τ)∆c0 (see Eq. (A.5)). On the other hand, the change ∆q(τ) under a shift ∆τc is

∆q(τ) = ∆X(τ) =
dq
dτc

∆τc = −
√

S(E)
0 x0(τ)∆τc. (A.21)

Comparing the two increments, we obtain

dc0 =

√
S(E)

0 dτc. (A.22)

Then, considering separately the zero mode in the ratio of the determinant,{
det

[
−Md2/dτ2 + V ′′[X(τ)]

]
det

(
−Md2/dτ2 + ω2

0

) }−1/2

=

√
S(E)

0
2π

ω0dτc

{
det′

[
−Md2/dτ2 + V ′′[X(τ)]

]
det′

(
−Md2/dτ2 + ω2

0

) }−1/2

=

√
S(E)

0
2π

ω0dτc

{
det′

[
−Md2/dτ2 + V ′′[X(τ)]

]
ω−2

0 det
(
−Md2/dτ2 + ω2

0

) }−1/2

, (A.23)

where det′[· · · ] denoted the reduced determinant with the zero mode removed.
We now consider the non-zero modes. It is easiest to deal with the second dis-

crete level, whose eigenvalue is (3/4)ω2
0. If we denote by Φ the ratio

Φ =
det′

[
−Md2/dτ2 + V ′′[X(τ)]

]
ω−2

0 det
(
−Md2/dτ2 + ω2

0

) , (A.24)

the contribution of this level to Φ as τ0 → ∞ is 3/4. We turn to other modes, with
ϵ > ω2

0. In this region, Eq (A.19) has a continuous spectrum without the bound-
ary condition. Therefore, let us forget the boundary condition for a moment. The
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solution in the continuous spectrum has the following properties: First, the solu-
tions are labeled by a continuous index p, which is related to the eigenvalue ϵ by
p =

√
ϵp − ω2

0 and ranges over the entire interval (0, ∞). Second, the continuum
wavefunctions determined by the Schrödinger equation, Eq. (A.19), include no re-
flection. Namely, choosing one of the linearly independent solutions in such a way
that

xp(τ) = eipτ, τ → +∞, (A.25)

we have in the other asymptotic region the same exponential:

xp(τ) = eipτ+iδp , τ → −∞. (A.26)

The entire dynamical effect is reduced to the phase [67]

eiδp =
1 + ip/ω0

1 − ip/ω0

1 + 2ip/ω0

1 − 2ip/ω0
. (A.27)

Since the second linearly independent solution can be chosen in the form xp(−τ),
the general solution is Axp(τ) + Bxp(−τ), where A and B are arbitrary constants.
Considering the boundary condition x(±τ0/2) = 0, the arbitrary constants satisfy

Axp(±τ0/2) + Bxp(∓τ0/2) = 0. (A.28)

In order to have nontrivial solutions for Eq. (A.28), it is necessary to satisfy

xp(τ0/2)
xp(−τ0/2)

= ±1, (A.29)

which gives the equation for p:

pτ0 − δp = πn, n = 0, 1, . . . . (A.30)

If we denote the solutions of Eq. (A.30) by p̃n = pn + δp/τ0 where pn = πn/τ0, the
ratio Φ of the determinant in ϵ > ω0 is written as

Φcon. ≃
∞

∏
n=0

ω2
0 + p̃2

n

ω2
0 + p2

n
. (A.31)

Since the difference p̃n − pn is small in the limit τ0 → ∞, Φcon. can be written as

Φcon. = exp

[
∞

∑
n=0

ln
ω2

0 + p2
n

ω2
0 + p2

n

]
≈ exp

[
∞

∑
n=0

2pn( p̃n − pn)

ω2
0 + p2

n

]
. (A.32)

Changing from the summation over n into integration over pn and using Eq. (A.30),
we obtain

Φcon. = exp
[

1
π

∫ ∞

0
dp

2δp p
p2 + ω2

0

]
= exp

[
− 1

π

∫ ∞

0

dδp

dp
ln
(

1 +
p2

ω2
0

)
dp
]

= exp
[
− 2

π

∫ ∞

0
dy
(

1
1 + y2 +

2
1 + 4y2

)
ln
(
1 + y2)] = 1

9
. (A.33)
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FIGURE A.2: Dilute instanton gas configuration.

Here, we introduced the dimensionless variable y = p/ω0. Finally, combining the
contribution of the second discrete level and the continuous spectrum, we obtain

Φ =
3
4
× 1

9
=

1
12

, (A.34)

and from Eqs. (A.18) and (A.23), the single-instanton contribution to the transition
amplitude (A.16):

⟨±q0/2| e−HSτ0 |∓q0/2⟩single

= e−S(E)
0

√
Mω0

2π sinh(ω0τ0)

√
S(E)

0
2π

ω0dτc

(
1
12

)−1/2

=

(√
Mω0

π
e−ω0τ0/2

)(√
6
π

√
S(E)

0 e−S(E)
0

)
ω0dτc. (A.35)

Note that the factor in the first bracket corresponds to a simple harmonic opera-
tor, the exponential factor e−S0 is classical contribution accounting for the action of
the instanton, and the remaining represents for the fluctuation around the bouncing
segments of the path. This result can be trusted as long as√

S(E)
0 e−S(E)

0 ω0τ0 ≪ 1. (A.36)

The energy of the lowest state is determined by the transition to the limit τ0 →
∞. At large τ0, paths constructed of many instantons and anti-instantons are im-
portant. Considering n instantons or anti-instantons with the arbitrary parameters
τ1, τ2, . . . , τn (see Fig. A.2). If the characteristic intervals satisfy |τi − τj| ≫ ω−1

0 , then
individual instantons and anti-instantons do not interact each other. Therefore, the
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transition amplitudes ⟨−q0/2| e−HSτ0 |+q0/2⟩ is obtained by summation over n:

⟨−q0/2| e−HSτ0 |+q0/2⟩

= ∑
n∈odd

(√
Mω0

π
e−ω0τ0/2

)
dn
∫ +τ0/2

−τ0/2
ω0dτn

∫ τn

−τ0/2
ω0dτn−1 · · ·

∫ τ2

−τ0/2
ω0dτ1

= ∑
n∈odd

(√
Mω0

π
e−ω0τ0/2

)
dn (ω0τ0)n

n!

=

√
Mω0

π
e−ω0τ0/2 sinh (ω0τ0d) , (A.37)

where d is the instanton density

d =

√
6
π

√
S(E)

0 e−S(E)
0 . (A.38)

Similarly, ⟨+q0/2| e−HSτ0 |+q0/2⟩ is obtained as

⟨+q0/2| e−HSτ0 |+q0/2⟩ =
√

Mω0

π
e−ω0τ0/2 cosh (ω0τ0d) . (A.39)

Finally, we consider how the transition amplitude (A.37), (A.39) can be under-
stood in physical terms. Considering the two-state system (2.8), the transition am-
plitude can be expressed as

⟨±q0/2| e−HSτ0 |+q0/2⟩
= ⟨±q0/2| e(∆0/2)σxτ0 |+q0/2⟩

= ⟨±q0/2|
[
|Eg⟩ e(∆0/2)τ0 ⟨Eg|+ |Ee⟩ e−(∆0/2)τ0 ⟨Ee|

]
|+q0/2⟩ . (A.40)

Using ⟨+q0/2|Eg⟩ = ⟨−q0/2|Eg⟩ = ⟨+q0/2|Ee⟩ = −⟨−q0/2|Ee⟩,

⟨+q0/2| e−HSτ0 |+q0/2⟩ ∝ cosh(∆0τ0/2), (A.41)
⟨−q0/2| e−HSτ0 |+q0/2⟩ ∝ sinh(∆0τ0/2). (A.42)

Comparing this expression with Eq. (A.37), the tunneling amplitude ∆0 is expressed
as

∆0 = 2ω0d = 2ω0

√
6S(E)

0
π

e−S(E)
0 . (A.43)

Rewriting it in terms of the potential barrier height Vb, we obtain Eq. (2.7).
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Appendix B

The Influence function of the
Spin-boson Model

In this appendix, following Ref. [15], we derive the influence function of the spin-
boson model (4.2). Let us start with the Caldeira-Leggett model (2.1). For sim-
plicity, we consider the local system coupled with one reservoir. Using a standard
imaginary-time path integral, the density matrix at β = 1/kBT can be written as

Wβ(q′′, x′′; q′, x′) = Z−1
t

∫ q(β)=q′′

q(0)=q′
Dq(τ)

∫ x(β)=x′′

x(0)=x′
Dx(τ) e−S(E)[q(τ),x(τ)], (B.1)

where Zt is the partition function of the global system. As explicitly indicated, the
functional integrations run over all the paths taken by the coordinates of the local
system q(τ) and reservoir x(τ) with endpoints q(0) = q′, x(0) = x′, q(β) = q′′, and
x(β) = x′′. The Euclidean action S(E) is given by the sum of the contributions from
the system, the reservoir, and the interaction as follows:

S(E) = S(E)
S + S(E)

B + S(E)
I =

∫ β

0
dτ
[
L(E)

S (τ) + L(E)
B (τ) + L(E)

I (τ)
]

, (B.2)

where the Euclidean Lagrangians of the Caldeira-Leggett model (2.1) are given by

L(E)
S (τ) =

M
2

q̇(τ)2 + V[q(τ)], (B.3)

L(E)
B (τ) =

N

∑
α=1

mα

2
[
ẋα(τ)

2 + ω2
αxα(τ)

2] , (B.4)

L(E)
I (τ) =

N

∑
α=1

[
−Cαxα(τ)q(τ) +

1
2

C2
αq(τ)2

mαω2
α

]
. (B.5)

Now, we focus on a reduced description in which the reservoir coordinates, x(τ),
are eliminated. To this end, we introduce the reduced density matrix

ρβ(q′′, q′) = TrB
[
Wβ(q′′, x′′; q′, x′)

]
=
∫ ∞

−∞
dx′ Wβ(q′′, x′; q′, x′), (B.6)

and the reduced partition function

Z(β) =
Zt(β)

ZB(β)
, (B.7)
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where ZB is the partition function of the isolated reservoir described by the collection
of N harmonic oscillators

ZB =
N

∏
α=1

Z(α)
B =

N

∏
α=1

1
2 sinh(βωα/2)

(B.8)

Thus, the reduced density matrix can be written in the form

ρβ(q′′, q′) = Z−1
∫ q(β)=q′′

q(0)=q′
Dq(τ) e−S(E)

S [q(τ)]F (E)[q(τ)], (B.9)

where F (E) is the influence functional

F (E)[q(τ)] ≡ e−S(E)
infl[q(τ)]

=
1

ZB

∮
Dx(τ) e−S(E)

B [q(τ),x(τ)]−S(E)
I [q(τ),x(τ)]. (B.10)

The integration
∮
Dx(τ) indicates the sum over all periodic paths with period β

taken by the coordinates of the reservoir x. In the following, we calculate the Eu-
clidean influence action S(E)

infl[q(τ)].
We choose periodic continuation of the paths q(τ) and x(τ). Therefore, we can

expand the coordinates as Fourier series

xα(τ) =
1
β

∞

∑
n=−∞

eiνnτ x̃α,n, (B.11)

q(τ) =
1
β

∞

∑
n=−∞

eiνnτ q̃n, (B.12)

where x̃α,n = x̃∗α,−n, q̃n = q̃∗−n, and νn = 2πn/β, (n = 0, ±1, ±2, . . . ) is a Matsubara
frequency. Substituting the Fourier expansion (B.11) and (B.12) into Eq. (B.2), we
obtain

S(E)
B,I [q(τ), x(τ)] ≡ S(E)

B [q(τ), x(τ)] + S(E)
I [q(τ), x(τ)]

=
N

∑
α=1

1
β

∞

∑
n=−∞

mα

2

(
ν2

n|x̃α,n|2 + ω2
α

∣∣∣∣x̃α,n −
Cαq̃n

mαω2
α

∣∣∣∣2
)

. (B.13)

Next, we split x̃α,n into the classical part x̄α,n and the quantum part yα,n as

x̃α,n = x̄α,n + yα,n =
Cαq̃n

mα(ν2
n + ω2

α)
+ yα,n, (B.14)

where x̄α,n is the stationary solution determined from the equation of motion

mα
d2 x̄α(τ)

dτ2 − mαω2
α x̄α(τ) + Cαq(τ) = 0. (B.15)
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Substituting Eq. (B.14) into (B.13), we obtain

S(E)
B,I [q(τ), x(τ)] = S(E)

B [y(τ)] + S(E)
infl[q(τ)] (B.16)

S(E)
B [y(τ)] =

N

∑
α=1

1
β

∞

∑
n=−∞

mα

2
(
ν2

n + ω2
α

)
|yα,n|2

=
N

∑
α=1

∫ β

0
dτ

mα

2
[
ẏα(τ)

2 + ω2
αyα(τ)

2] (B.17)

S(E)
infl[q(τ)] =

N

∑
α=1

C2
α

2mα

1
β

∞

∑
n=−∞

(
1

ω2
α

− 1
ν2

n + ω2
α

)
|qn|2. (B.18)

The path sum of all β-periodic quantum fluctuations y(τ) directly yields the parti-
tion function of the reservoir,

ZB =
∮

Dy(τ) e−S(E)
B [y(τ)]. (B.19)

Hence this term cancels the factor Z−1
B in Eq. (B.10). The influence action (B.18) may

be concisely written as

S(E)
infl[q(τ)] =

M
2

1
β

∞

∑
n=∞

ξn|qn|2, (B.20)

ξn =
1
M

N

∑
α=1

C2
α

mαω2
α

ν2
n

(ν2
n + ω2

α)
=

2
Mq2

0

∫ ∞

0
dω

I(ω)

ω

ν2
n

(ν2
n + ω2)

, (B.21)

where I(ω) is the spectral density defined in Eq. (2.17). Performing the inverse
Fourier transformation, the influence action (B.20) becomes

S(E)
infl[q(τ)] =

∫ β

0
dτ
∫ τ

0
dτ′ k(τ − τ′)q(τ)q(τ′), (B.22)

k(τ) =
M
β

∞

∑
n=−∞

eiνnτξn. (B.23)

Note that the kernel k(τ) satisfies k(τ) = k(β − τ) = k(τ + β) and
∫ β

0 dτ k(τ) = 0.
Using these properties, the influence function (B.22) is rewritten as

S(E)
infl[q(τ)] = −1

2

∫ β

0
dτ
∫ τ

0
dτ′ k(τ − τ′)

[
q(τ)− q(τ′)

]2 . (B.24)

Evidently, the influence action S(E)
infl[q(τ)] is fully nonlocal. Alternatively, the influ-

ence action is expressed in terms of the kernel

k̃(τ) = µ : δ(τ) : −k(τ), (B.25)

where : δ(τ) : is the periodically continued δ-function,

S(E)
infl[q(τ)] =

1
2

∫ β

0
dτ
∫ τ

0
dτ′ k̃(τ − τ′)

[
q(τ)− q(τ′)

]2 . (B.26)
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With choice

µ =
N

∑
α=1

Caα2

mαω2
α

=
2
q2

0

∫ ∞

0
dω

I(ω)

ω
, (B.27)

the kernel can be expressed as

k̃(τ) =
2

q2
0β

∞

∑
n=−∞

∫ ∞

0
dω I(ω)

ω

ν2
n + ω2 eiνnτ (B.28)

=
1
q2

0

∫ ∞

0
dω I(ω)

cosh[ω(β/2 − τ)]

sinh(ωβ/2)
. (B.29)

Considering the spin-boson model, the path q(τ) is piecewise constant and it
occasionally jumps between the positions +q0/2 and −q0/2, which are positions
give minimal potential energy of the local system. It is convenient to put

q(τ) =
q0

2
σz(τ), (B.30)

where σz(τ) is a spin path. Thus, the spin path, σz(τ), jumps forth and back between
the variables +1 and −1, and is expressed by

σz(τ) = 1 + 2
2m

∑
j=1

(−1)jθ(τ − sj), (B.31)

which implies a path of 2m alternating flips with centers {sj}. Introducing the kernel
K(τ) ≡ q2

0k̃(τ), the influence function (B.10) takes form

F (E)[σz(τ)] = exp
[
−1

8

∫ β

0
dτ
∫ τ

0
dτ′ K(τ − τ′)

[
σz(τ)− σz(τ

′)
]2
]

(B.32)

K(τ) =
∫ ∞

0
dω I(ω)

cosh[ω(β/2 − τ)]

sinh(ωβ/2)
. (B.33)

From these results, it is straightforward to derive the partition function (4.1) with the
kernel (4.3).
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Appendix C

The Noninteracting-blip
Approximation (NIBA)

In this appendix, based on Ref. [15], we derive the symmetrized correlation func-
tion (3.48) in the NIBA and discuss the conditions for the NIBA. The density matrix
of the global system (2.8), Ŵ(t), is written in the real-time path integral form as

⟨q f , x f | Ŵ(t) |q′f , x′f ⟩ =
∫

dqidq′idxidx′i K(q f , x f , t; qi, xi, 0) ⟨q f , x f | Ŵ(0) |q′f , x′f ⟩

×K∗(q′f , x′f , t; q′i, x′i, 0), (C.1)

where qi/ f and xi/ f are the coordinates of the local system and reservoir, respectively,
and K is the coordinate representation of the time evolution operator

K(q f , x f , t; qi, xi, 0) = ⟨q f , x f | e−iHt |qi, xi⟩ (C.2)

=
∫

Dq(t)Dx(t) eiS[q(t),x(t)]. (C.3)

Here, the functional integration,
∫
Dq(t)Dx(t), extends over all paths with end-

points

q(0) = qi, q(t) = q f , x(0) = xi, x(t) = x f , (C.4)

and S[q(t), x(t)] is the action of the global system. The density matrix of the global
system describes the dynamics of the system-plus-environment complex as a whole.
However, in most cases of interest, the only information one wishes to have is the
system’s dynamics under the reservoir’s influence. Then, the quantity one is really
interested in is the reduced density matrix defined as

ρ(q f , q′f ; t) =
∫

dx f ⟨q f , x f | Ŵ(t) |q′f , x f ⟩ . (C.5)

Assuming that the density matrix of the global system at t = 0 is in a product
initial state

Ŵ(0) = ρS(0)⊗
1

ZB
e−βHB , (C.6)
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FIGURE C.1: Graphical representation of sojourns and blips. Λj,k is
the interaction between blip j and blip k, and Xj,k is the interaction
between blip j and sojourn k.

where ρS is the density matrix of the local system, e.g., ρS(0) = |↑⟩ ⟨↑|, the reduced
density matrix is expressed by

ρ(q f , q′f ; t) =
∫

dqidq′i JFV(q f , q′f , t : qi, q′i, 0)ρ(qi, q′i; 0), (C.7)

JFV(q f , q′f , t : qi, q′i, 0) =
∫

DqDq′ ei(SS[q]−SS[q′])FFV[q, q′], (C.8)

where FFV[q, q′] is the Feynman-Vernon influence functional. In the two-state sys-
tem, it can be expressed in terms of the spin path [68]:

FFV[σz, σ′
z] = exp

{
−1

4

∫ t

0
dt′
∫ t′

0
dt′′

[
σz(t′)− σ′

z(t
′)
]

×
[
Q̈(t′ − t′′)σz(t′′)− Q̈∗(t′ − t′′)σ′

z(t
′′)
]}

, (C.9)

where σz(τ) = q(τ)/(q0/2), σ′
z(τ) = q′(τ)/(q0/2), and Q(t) is the kernel given as

Q(t) =
∫ ∞

0
dω

I(ω)

ω

{
coth

(
βω

2

)
[1 − cos(ωt)] + i sin(ωt)

}
. (C.10)

We note that Q(t) is related with W(τ) in Eq. (4.6) via the analytical continuation as
Q(t) = W(τ = it). Introducing antisymmetric and symmetric spin paths

ξ(t) =
σz(t)− σ′

z(t)
2

, (C.11)

η(t) =
σz(t) + σ′

z(t)
2

, (C.12)

respectively, the influence functional (C.9) is rewritten as

FFV[σz, σ′
z] = exp

{∫ t

0
dt′ ξ̇(t′)

∫ t′

0
dt′′

[
Q′(t′ − t′′)ξ̇(t′′) + iQ′′(t′ − t′′)η̇(t′′)

]}
,

(C.13)

where Q′(t) ≡ Re[Q(t)] and Q′′(t) ≡ Im[Q(t)].
In the two-state system, the reduced density matrix is 2 × 2 matrix. Intervals

of the spin path dwelling in the diagonal and off-diagonal states have been termed
‘sojourn’ and ‘blip’, respectively [6]. During a sojourn, the function ξ(t) is zero,
whereas during a blip interval the function η(t) is zero. There are two sojourn states
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(ηi = ±1) and two blip states (ξi = ±1). A general sojourn-to-sojourn path making
2n transitions at intermediate times tj, (j = 1, 2, . . . , 2n) is parametrized by

η(n)(t) =
n

∑
j=0

ηj
[
θ(t − t2j)− θ(t − t2j+1)

]
, (C.14)

ξ(n)(t) =
n

∑
j=0

ξ j
[
θ(t − t2j−1)− θ(t − t2j)

]
. (C.15)

Denoting the intervals spent in blip and sojourn states by τj and sj, respectively, we
have (see Fig. C.1)

τj = t2j − t2j−1, sj = t2j+1 − t2j. (C.16)

Thus, the influence functional (C.13) can be written as

F (n) = GnHn, (C.17)

Gn = exp

[
−

n

∑
j=1

Q′
2j,2j−1

]
exp

[
−

n

∑
j=2

j−1

∑
k=1

ξ jξkΛj,k

]
, (C.18)

Hn = exp

[
i

n

∑
j=1

j−1

∑
k=0

ξ jηkXj,k

]
= exp

[
i

n−1

∑
k=0

n

∑
j=k+1

ξ jηkXj,k

]
. (C.19)

Here, Λj,k is an interaction between blip j and blip k, and Xj,k is an interaction be-
tween blip j and sojourn k (see Fig. C.1):

Λj,k = Q′
2j,2k−1 + Q′

2j−1,2k − Q′
2j,2k − Q′

2j−1,2k−1, (C.20)

Xj,k = Q′′
2j,2k+1 + Q′′

2j−1,2k − Q′′
2j,2k − Q′′

2j−1,2k+1, (C.21)

where Qj,k = Q(tj − tk). The blip interactions are bundled up in the real-valued
function Gn. The first exponential factor in Eq. (C.18) contains the intrablip inter-
actions, and the second exponential factor represents the interblip correlations. The
interactions between the sojourns and the blips are in the phase factor Hn. However,
the sojourns do not interact with each other. The function Gn is a filtering function
which suppresses long blips. Hence, it is favored that the system dwells in sojourn
states. Physically, this is because continuous measurement of σz due to the environ-
ment suppresses quantum interference between the eigenstates of σz, and results in
the decrease of occupation lengths of blip states.

Using the influence functional (C.17), we obtain the dynamics of the population
⟨σz⟩t as follows:

⟨σz⟩t = 1 +
∞

∑
m=1

(−1)m
∫ t

0
D2m,0{tj}

1
2m ∑

{ξ=±1}
Fm, (C.22)

where ∫ t

0
D2m,0{tj} =

∫ t

0
dt2m · · ·

∫ t2

0
dt1 ∆2m, (C.23)
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and the effect of the reservoir is included in the influence function

Fm = Gm

m−1

∏
k=0

cos

(
m

∑
j=k+1

ξ jXj,k

)
. (C.24)

In addition, one can derive the generalized master equation for the population:

d ⟨σz⟩t
dt

= −
∫ t

0
dt′ Kz(t, t′) ⟨σz⟩t , (C.25)

Compared Eq. (C.22) with (C.25), the kernel Kz(t, t′) is expressed as

Kz(t, t′) = ∆2F1(t, t′) +
∞

∑
n=2

(−1)n−1 ∆2n

2n

∫ t

t′
dt2n−1 · · ·

∫ t3

t′
dt2 ∑

{ξ j=±}
F̃n, (C.26)

where F̃n is irreducible influence function defined by subtraction of the reducible
parts in Fn. Here, ‘irreducible’ means that it cannot be separated into two or more
uncorrelated parts at sojourns.

Now, we turn to the discussion of the dynamics within the noninteracting-blip
approximation (NIBA). The simple assumption underlying the NIBA is that the av-
erage time ⟨s⟩ spent by the system in sojourn states is very large compared to the
average time ⟨τ⟩ spent in blip states. In detail, the NIBA assumption leads to two
simple prescriptions regarding the sojourn-blip correlation Xj,k and interblip inter-
actions Λj,k.

1. Set the sojourn-blip correlation

Xj,k =

{
0, (j ̸= k + 1),
Q′′(τk+1), (j = k + 1).

(C.27)

2. Set all interblip interactions Λj,k equal to zero.

With these specifications, the influence functional (C.17) reduces to a factorized form
of intrablip correlations in which the sign of the individual blip phase depends on
the label of respective preceding sojourn,

F (n)
NIBA =

n

∏
j=1

exp
[
−Q′(τj) + iξ jηj−1Q′′(τj)

]
. (C.28)

Generally, the NIBA can be justified in three cases discussed in Section 3.5 of the
main text.

In the NIBA, since the irreducible influence functions F̃n become zero for n > 1,
the kernel Kz(t, t′) is approximated as

Kz,NIBA(t, t′) = ∆2F1(t, t′) = ∆2e−Q′(t−t′) cos
[
Q′′(t − t′)

]
. (C.29)

Since this kernel depends only on the relative time t− t′, one can perform the Laplace
transformation for it:

Kz,NIBA(λ) = ∆2
∫ ∞

0
dτ e−λτe−Q′(t−t′) cos

[
Q′′(t − t′)

]
. (C.30)
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From Eq. (C.25), the Laplace transformation of the kernel is related to the population
under the condition ⟨σz⟩t=0 = +1 as follows:

⟨σz(λ)⟩ =
1

λ + Kz(λ)
. (C.31)

The symmetrized correlation function S(t) defined in Eq. (2.44) is related to the
population as follows [56]:

S(t) = ⟨σz⟩|t| , (C.32)

under the condition ⟨σz⟩t=0 = +1. Performing the Fourier transformation for Eq. (C.32)
and using Laplace transformation of the population (C.31),

S(ω) = 2Re
∫ ∞

0
dt eiωt ⟨σz⟩t (C.33)

= 2Re [⟨σz(−iω)⟩] = 2Re
[

1
−iω + Kz(−iω)

]
. (C.34)

Rewriting the kernel Kz(λ) with the self-energy Σ(λ) (3.49), we finally derive Eq. (3.48).
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Appendix D

Impedances of the Transmission
Line

We analyze the frequency dependence of the spectral density for the circuit model
discussed in Chapter 6. Assuming |ωCjZj+1(ω)| ≪ 1, the recurrence relation (6.40)
is given approximately:

Zj(ω) ≃ Rj + iωLj + Zj+1(ω)− iωCjZj+1(ω)2. (D.1)

In the continuous limit N → ∞, where N is the number of islands in the transmission
line, this recurrence relation reduces to the differential equation:

∂Z(ω, x)
∂x

≃ −r(x)− iωl(x) + iωc(x)Z(ω, x)2, (D.2)

where r(x), l(x), and c(x) (0 ≤ x = j/N ≤ 1) are the resistance, inductance, and
capacitance per unit length, respectively. From Eq. (6.41), they are given as

r(x) = r0xn, (D.3)
l(x) = l0xp, (D.4)
c(x) = c0xm, (D.5)

where r0 = R0N, l0 = L0N, and c0 = C0N. We note that Z(ω) = Z(ω, x → 0)/2.

D.1 The flux qubit

For the choice of the parameters given in Eq. (6.42), the differential equation for the
impedance is written as

∂Z(ω, x)
∂x

≃ −r0xn − iωl0 + iωc0xmZ(ω, x)2. (D.6)

Under the condition

x∗ ≡
(

n
2ω

√
l0c0

)2/(m+2)

≪ x ≪
(

ωl0
r0

)1/n

, (D.7)

Ż(ω, x) = ∂Z(ω, x)/∂x and r0xn are sufficiently small compared with other terms in
the right-hand side of Eq. (D.6). Then, we obtain

ZA(ω, x) =

√
l0
c0

x−m/2, (D.8)
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In contrast, for x ≃ 0, we can neglect r(x) and c(x), and obtain the following:

ZB(ω, x) = −iωl0x + A(ω). (D.9)

The constant of integration, A(ω), can be determined by the equation ZA(ω, x∗) =
ZB(ω, x∗). Thus, we arrive at the approximate expression of Z(ω) as follows:

Z(ω) ∼ ZB(ω, x → 0)
2

=
1
2

(
iωl0x∗ +

√
l0
c0

(x∗)−m/2

)
. (D.10)

From Eq. (6.27), we obtain the following the spectral density:

I(ω) ∝ I0(ω) = ωRe
[

Z(ω)−1
]

∝ ω2/(m+2) (D.11)

Note that since m is a non-negative real number, this circuit realizes sub-Ohmic reser-
voirs with arbitrary sub-Ohmic exponent s (s < 1). This frequency dependence ap-
pears for ω∗ ≪ ω ≪ ωc, where the lower bound, ω∗, is obtained by considering the
condition (D.7):

ω∗ =

[(m
2

)2n rm+2
0

cn
0 lm+n+2

0

]1/(m+2n+2)

. (D.12)

D.2 The charge qubit

For the choice of the parameters given in Eq. (6.45), the differential equation for the
impedance is written as

Ż(ω, x) ≃ −r0xn − iωl0xp + iωc0Z(ω, x)2. (D.13)

The spatial dependence of the elements is different from the case of the flux qubit.
However, we can analyze the behavior of the impedance in the same way. In this
case, neglecting Ż(ω, x) and r0xn give the impedance as

ZA(ω, x) =

√
l0
c0

xp/2, (D.14)

for

x∗ ≡
(

p
2ω

√
l0c0

)2/(p+2)

≪ x ≪
(

ωl0
r0

)1/(n−p)

. (D.15)

In contrast, for x ≃ 0, we can neglect terms that elements have the spatial depen-
dence and obtain

ZB(ω, x) = − 1
iωc0x + A(ω)

. (D.16)
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From the condition ZA(ω, x∗) = ZB(ω, x∗) and Eq. (6.39), the frequency dependence
of the spectral density is obtained as

I(ω) ∝ I0(ω) = ωRe[Z(ω)] ∝ ω2/(p+2). (D.17)

Note that since p is a non-negative real number, this circuit realizes sub-Ohmic reser-
voirs with arbitrary sub-Ohmic exponent s (s < 1). This frequency dependence for
I(ω) appears for ω∗ ≪ ω ≪ ωc. The lower bound, ω∗, is obtained from the condi-
tion (D.15):

ω∗ =

[( p
2

)2(n−p) rp+2
0

cn−p
0 ln+2

0

]1/(2n−p+2)

. (D.18)

D.3 The charge qubit (0 < s ≤ 0.5)

We can analytically investigate the power of the impedance in the same way as the
above two cases. For the choice of the parameters given in Eq. (6.48), the differential
equation for the impedance is written as

Ż(ω, x) ≃ −r0xn + iωc0Z(ω, x)2. (D.19)

For

x∗ ≡
(

n2

4ωr0c0

)1/(n+2)

≪ x, (D.20)

we can neglect Ż(ω, x) and obtain:

ZA(ω, x) = e−iπ/4
√

r0

ωc0
xn/2. (D.21)

On the other hand, for x ≃ 0, we can neglect the first terms of the right hand side in
Eq. (D.19). It gives the impedance for x ≃ 0 as

ZB(ω, x) = − 1
iωc0x + A(ω)

, (D.22)

where A(ω) is the constant of integration and determined by the equation ZA(ω, x∗) =
ZB(ω, x∗). Therefore, from Eq. (6.39), we obtain the spectral density as follows

I(ω) ∝ I0(ω) = ωRe [Z(ω)] ∝ ω1/(n+2). (D.23)

Note that since n is a non-negative real number, this circuit realizes sub-Ohmic reser-
voirs with 0 < s ≤ 0.5. This frequency dependence appears for ω∗ ≪ ω ≪ ωc,
where the lower bound, ω∗, and cutoff frequency, ωc, are given as

ω∗ =
1

r0c0

(n
2

)2
(

1 +
2
√

2
n

)n+2

, (D.24)

ωc =
N2

r0c0

(
2N
n

)n

, (D.25)

respectively.
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