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Abstract

A superconducting circuit is one of the prominent candidates for the realization
of quantum computation, which is the grand challenge in 21st-century science. The
superconducting circuit has several advantages in a high degree of freedom for de-
signing, and its elementary ingredients, such as superconducting qubits, transmis-
sion lines, and hybrid structures called the circuit quantum electrodynamics (QED),
have been utilized for the application of quantum computers. The superconduct-
ing circuit also provides an ideal and useful platform for the study of fundamental
physics. In particular, coupling to environments and disorder, which are usually ob-
stacles for the realization of quantum computers, provides fascinating problems on
many-body effects, quantum phase transition, localization, and heat transport.

In this thesis, we investigate three problems in superconducting circuits. First,
we consider a quantum phase transition in the sub-Ohmic spin-boson system, which
is realized by a charge qubit coupled to a transmission line, and study quantum
critical phenomena in the frequency dependence of microwave scattering off this
circuit. By performing the quantum Monte Carlo simulation, we find signatures of
the quantum critical behavior as well as the Fermi-liquid-like feature indicated by
the generalized Shiba-Korringa relation. We also describe how to construct the sub-
Ohmic spin-boson system using superconducting circuits.

Second, we study the transmission properties through a Josephson-junction chain.
This system is not only useful for application as a superinductor but also suitable to
study many-body effects induced by Coulomb interaction and disorder. When the
disorder is added to this system, the interplay of Coulomb interaction and disorder
makes the Josephson-junction chain undergo a transition into an intriguing glassy
insulator: Bose glass. We focus on the deep insulating regime and show that the
collective pinning affects the dynamical properties of the Josephson-junction chain
in the whole frequency region.

Finally, we study heat transport through an assembly consisting of a supercon-
ducting qubit sandwiched between superconducting harmonic resonators, which
is described by the quantum Rabi model, a typical multi-level system. Using the
non-perturbative approximation, we find a two-peak structure of the linear thermal
conductance as a function temperature. This characteristic transport behavior comes
from the fact that there are multiple levels in the assembly and is expected to be ad-
vantageous for the application of quantum heat devices.

These studies will provide a concrete foundation for further research on the
physics of superconducting circuits. We also expect that the results obtained in this
thesis will be observed in the near future.
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Chapter 1

Introduction

In this chapter, we briefly explain the research background of this thesis. After a
brief overview of the many-body problems in superconducting circuits, we describe
the purpose of this thesis. Finally, we give the outline of this thesis.

1.1 Development of quantum computer

The realization of quantum computation is one of the grand challenges in 21st-
century science. The idea of the quantum computer was firstly proposed 40 years
ago by Richard P. Feynman for simulating quantum systems that are too hard to do
using classical computers [1]. While the information is expressed by a bit, which
takes only two values, e.g., 0 or 1, in the classical computer, we can use their super-
position α |0⟩+ β |1⟩ to perform computation in the quantum computer [2]. A set of
two quantum states is called a “qubit” or “quantum bit” in analogy to the classical
computer. Although this idea might sound like a fantasy at the time of the first pro-
posal, quantum computers are now beginning to realize in various physical systems,
e.g., superconducting circuits [3], semiconductors [4, 5, 6], or cold atoms [7, 8, 9].

A solid-state device using superconducting circuits is a leading candidate for the
realization of quantum computers because of their high degree of freedom for de-
signing, suppression of dissipation, and strong non-linearity. However, there still
remain several problems to be overcome. One of the major problems is the loss
of the devices’ coherence. Since the solid devices inevitably interact with environ-
ments, the quantum coherence of qubits is lost in a finite amount of time. The co-
herence time of superconducting qubits was of the order of 1 ns at the beginning of
the development [10]. Thanks to technological development, it has been improved
for these twenty years to about 100 µs [11]. This remarkable improvement of co-
herence time has changed the situation of the development of quantum computers
significantly. Recently, big companies, such as Google, IBM, Intel, and Microsoft,
also joined quantum computer development. This trend will be accelerated in the
future.

It is also worth noting that qubits can be coupled to an artificial environment fab-
ricated on superconducting circuits in a controlled way. The circuit quantum elec-
trodynamics (circuit-QED) has been studied intensively for the system composed
of superconducting qubits and transmission lines [12]. The circuit-QED is now
an essential technology for control of inter-qubit coupling and quantum measure-
ment [13, 14, 15].
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1.2 Superconducting circuits as a quantum simulator

We have mentioned the superconducting qubit as a leading ingredient of the quan-
tum computer. To operate correctly it as the quantum computer, it is needed to put
qubits on an ideal surrounding. However, in realistic systems, there are inevitable
troublesome sources, such as disorder of circuits and interaction with the environ-
ments. For the realization of the quantum computer, they have to be suppressed
as far as possible. However, in this thesis, we would like to promote the opposite
direction. Namely, we focus on many-body effects induced by the presence of bad
situation, such as strong coupling to the environment and randomness of the sys-
tem. The superconducting circuits indeed provide an attractive stage to investigate
fundamental physics related to many-body problems that emerge in such bad situ-
ations because of their high feasibility and controllability. In this sense, the super-
conducting circuit can be regarded as an ideal “quantum simulator” for solving the
fundamental problems in quantum physics.

In the subsequent three subsections, we briefly overview many-body phenom-
ena in superconducting circuits from three viewpoints. A detailed description, in-
cluding experimental situations, will be given in Chapter 2.

1.2.1 Circuit-QED

Generally, it is challenging to realize a small quantum system strongly coupled to
environments. For example, the interaction strength between an atom and the light
in a vacuum is characterized by the fine structure constant α = 1/137 ≪ 1. In the
cavity-QED system, the atom-light interaction can be strengthened by introducing
a cavity for the light. Compared with the cavity-QED, the circuit-QED realized in
the superconducting circuit has several advantages for realizing strong interaction
between a superconducting qubit and electromagnetic field of the superconducting
resonator because the superconducting qubit has a much larger dipole moment and
a higher quality factor [12]. Therefore, the circuit-QED system is an ideal platform
for realizing a strong coupling regime between the qubit and the resonator. Further-
more, the circuit-QED system allows us to realize a qubit system coupled to contin-
uum environments that is described by a fundamental open quantum system called
the spin-boson model. It is notable that the spin-boson model has been studied the-
oretically for a long time as a useful prototype for the study of decoherence due to
the environment [16, 17, 18, 19, 20, 21, 22, 23]. It is also known that the spin-boson
model exhibits many-body effects such as the Kondo-like effect and the quantum
phase transition. Now, the recent technological development of superconducting
circuits has enabled us to directly access these many-body effects in a controllable
way.

1.2.2 Josephson-junction chain

Because of the flexibility in superconducting circuits, it is not difficult to fabricate
a Josephson-junction chain. Actually, the recent development of fabrication tech-
niques has enabled us to realize the long Josephson-junction chain in which each
superconducting island is coupled to two neighboring islands via the Josephson cou-
pling [24]. The Josephson-junction chain works as a high-impedance transmission
line, known as a superinductor, and is useful for various applications. Moreover,
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it exhibits the many-body phenomena, such as the superconductor-insulator tran-
sition, inherent to Coulomb interaction between Cooper pairs. Although it is pos-
sible to realize the Josephson junction chain with uniform junction parameters, the
disordered potential for superconducting islands is inevitable because of charged
impurities near the superconducting islands in the present technology. This dis-
order in the one-dimensional quantum system raises the localization, such as the
Anderson localization for the non-interacting particles [25, 26, 27, 28]. Therefore,
the Josephson-junction chain is an important system for investigating the localiza-
tion problem incorporated with the many-body effect. In particular, the disordered
Josephson-junction chain is an ideal system to study a compressible insulating state,
which is called “Bose glass” [29, 30, 31, 32].

1.2.3 Quantum heat transport

Recent development in the technology of heat measurement has enabled us to study
heat transport in superconducting devices [33, 34, 35]. The superconducting circuit
provides an ideal platform to study quantum heat transport via a small quantum
system. Heat transport in the superconducting circuit is mainly induced by energy
transfer between two or more thermal baths of photons at low temperatures where
phonon transport is negligible. In the analogy of the electronic devices, various
quantum heat devices such as a quantum heat rectifier, a quantum heat valve, a
quantum heat transistor, and a quantum heat engine have been proposed, and some
of them have been implemented on the superconducting circuits [35].

Heat transport through a single superconducting qubit is one of the most funda-
mental problems in the study of quantum heat transport. This kind of heat trans-
port can be described by the spin-boson model, which exhibits many-body effects
as already described. The transport processes in heat transport through the single
superconducting qubit (the two-level system) have been studied theoretically in the
whole parameter region using the perturbative methods [36, 37] and the numerical
simulations [23, 38]. From the viewpoint of the function as quantum heat devices,
the system described by the spin-boson model is so simple that there is no room to
demonstrate useful functions by controlling experimental parameters. Therefore, to
gain a useful function in quantum heat devices, we need to expand the experimental
setup beyond the single superconducting qubit.

1.3 Purposes

In this thesis, we theoretically study three types of many-body effects in supercon-
ducting circuits. First, we consider a single superconducting qubit (a two-level sys-
tem) coupled to the environment based on the spin-boson model. In general, the en-
vironment of the spin-boson model is categorized into three types, i.e., sub-Ohimc,
Ohmic, and super-Ohmic baths (see Chapter 2 for a detail). In this thesis, we focus
on quantum phase transition in the sub-Ohmic spin-boson model and study how
quantum critical phenomena are observed in microwave spectroscopy, employing
the quantum Monte Carlo simulation and the renormalization-group analysis. In
addition, we propose superconducting circuits which realize the sub-Ohmic spin-
boson model.

Second, we study properties of microwave spectroscopy in a disordered Josephson-
junction chain with emphasis on the deep insulating phase where the disorder of the
system and the elasticity due to the long-range Coulomb interaction compete with
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each other. By studying the frequency dependence of the microwave transmission,
we find that the contribution of the forward and backward scatterings can be dis-
cussed separately and that the model for the Josephson-junction chain has a different
universality from the known disordered model in the Bose glass phase.

Finally, we study quantum heat transport through a superconducting qubit em-
bedded between two harmonic resonators, which is described by the quantum Rabi
model. We show that this system has a sufficiently large degree of freedom for con-
trol of heat current compared with the standard spin-boson model. By employing
the non-perturbative approximation called the noninteracting-blip approximation,
we calculate the linear thermal conductance and discuss its temperature depen-
dence. We seek out a parameter region where the transport property is peculiar
to multi-level systems and clarify its mechanism. We find that the linear thermal
conductance can be sensitive to a controllable parameter, which is advantageous for
the application of quantum heat devices.

1.4 Outline

This thesis is organized as follows. In Chapter 2, we review how to treat the super-
conducting circuit theoretically. We explain theoretical descriptions for resonators,
transmission lines, Josephson junctions, superconducting qubits, hybrid systems,
and Josephson junction chains. We also review recent experiments for supercon-
ducting circuits and clarify the problems to be solved. In Chapter 3, we study the
microwave reflection in superconducting circuits described by the sub-Ohmic spin-
boson model [39]. We propose a circuit model to realize a sub-Ohmic spin-boson
model and discuss quantum critical behavior through frequency dependence of the
reflection amplitude in microwave spectroscopy. In Chapter 4, we investigate the
microwave transmission through a disordered Josephson-junction chain [40]. By
combining analytical methods and numerical calculation, we clarify the frequency
dependence of the transmission in the localized regime and present several pieces of
information on the transmission, the Lyapunov exponent, and the reflection phase.
In Chapter 5, we study quantum heat transport through the quantum Rabi model [41].
Using the Keldysh formalism and the non-perturbative approach, we calculate the
linear thermal conductance and show its temperature dependence in detail and clar-
ify useful properties as quantum heat devices. Finally, we summarize our works and
give future perspectives for them in Chapter 6.
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Chapter 2

Review of Superconducting
Circuits

In this chapter, we introduce various models for superconducting circuits, which
will be used in the theoretical studies described in later chapters. First, we ex-
plain basic linear superconducting elements, an LC-circuit and a transmission line,
in Section 2.1. We also introduce three types of superconducting qubits (charge
qubit, transmon qubit, and flux qubit) in Section 2.3. Finally, we introduce three
types of hybrid superconducting circuits, i.e., a dissipative superconducting qubit,
a Josephson-junction chain, and quantum heat devices and briefly review recent ex-
periments regarding each circuit.

2.1 Linear circuits

2.1.1 LC-circuit

First, we consider the LC-circuit, which is the simplest electrical circuit composed of
an inductor with the inductance L and a capacitor with the capacitance C in parallel
(see Fig. 2.1 (a)) [42]. The equations of motion for the voltage V and the current I of
the LC-circuit are given by using the Kirchhoff’s circuit laws

I(t) = −C
dV(t)

dt
, (2.1)

V(t) = L
dI(t)

dt
. (2.2)

From these equations of motion, we can obtain an equation for the current

d2 I(t)
dt2 = −ω2

0 I(t) (2.3)

FIGURE 2.1: (a) LC-circuit and (b) lumped element model of the trans-
mission line.
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with ω0 = 1/
√

LC. This equation means that the current of the LC-circuit oscillates
with the angular frequency ω0.

Energies stored at the capacitor and the inductor are given by (1/2)CV2 and
(1/2)LI2, respectively. Using relations between the charge and the voltage (Q = CV)
and the charge and the current (I = −Q̇), the total energy is expressed in terms of
the charge as

H =
1

2C
Q2 +

L
2

Q̇2. (2.4)

Now, introducing a flux variable ϕ defined as ϕ̇ = V, which is conjugate to the
charge,

[ϕ, Q] = ih̄, (2.5)

the total energy is rewritten as

H =
1

2C
Q2 +

1
2L

ϕ2. (2.6)

This Hamiltonian is identical to one of a harmonic oscillator with the correspondence
(p, x, m, k) ↔ (Q, ϕ, C, L−1). Using this identity, we can quantize the LC-circuit in
the same manner as the harmonic oscillator. Introducing bosonic annihilation and
creation operators a and a†, respectively, which satisfy the commutation relation
[a, a†] = 1,

ϕ =

√
h̄Z0

2

(
a + a†

)
, (2.7)

Q = −i

√
h̄

2Z0

(
a − a†

)
, (2.8)

with an impedance of the LC-circuit Z0 =
√

L/C, the Hamiltonian reads

H = h̄ω0

(
a†a +

1
2

)
, (2.9)

which means that the LC-circuit is a resonator with eigen angular frequency ω0.

2.1.2 Transmission line

A transmission line is a useful ingredient of superconducting circuits in which elec-
tromagnetic waves can propagate freely (see Fig. 2.1 (b)). The transmission line is a
natural extension of the LC-circuit and its Hamiltonian is obtained from the contin-
uum limit of a series of the LC-circuits as

H =
∫ d

0
dx
{

1
2c

[Q(x)]2 +
1
2l
[∂xϕ(x)]2

}
, (2.10)

where Q(x) and ϕ(x) are the charge and flux variables which satisfy the commuta-
tion relation [ϕ(x), Q(y)] = ih̄δ(x − y). In a similar procedure to the LC-circuit, we
can rewrite the Hamiltonian of the transmission line in terms of the bosonic annihi-
lation and creation operators an and a†

n, respectively, which satisfy the commutation
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FIGURE 2.2: Josephson junction. Superconductors are interrupted by
a thin insulating barrier. Copper pairs induce the supercurrent with-
out any voltage.

relation [an, a†
m] = δn,m, as

H = ∑
k

h̄ωk

(
a†

k ak +
1
2

)
, (2.11)

where ωk = |k|/
√

lc is the natural frequency of the kth mode. This form of the
Hamiltonian means that transmission line is equivalent to a collection of harmonic
oscillators. For a detailed derivation from the Lagrangian, see Appendix A.

2.2 Josephson junction

Next, we introduce a Josephson junction, which is a non-linear circuit ingredient
to bring fruitful physics and complex functions of devices. A Josephson junction
consists of two superconductors interrupted by a thin insulating barrier [43, 44] as
shown in Fig 2.2. Through the Josephson junction, a supercurrent can flow without
voltage drop across the barrier and its amplitude is given by the first Josephson
relation

Is = Ic sin φ, (2.12)

where φ is the phase difference between the two superconductors, which is called
the Josephson phase and Ic is the critical current. When the constant voltage dif-
ference V is applied to the Josephson junction, the time evolution of the Josephson
phase is governed by the second Josephson relation,

dφ(t)
dt

=
2e
h̄

V. (2.13)

From these relations, (2.12) and (2.13), we can see that the Josephson junction be-
haves as an inductor with the Josephson inductance

LJ ≡
V

dI/dt
=

h̄
2eIc cos φ

=
h̄

2eIc
√

1 − (I/Ic)2
. (2.14)

This relation indicates the non-linearity of the Josephson junction, which plays a
crucial role in superconducting circuits. We note that for Ic ≫ I, the Josephson
inductance becomes independent of the bias current as LJ = h̄/(2eIc). This linear
inductor is useful for making lossless and high-impedance transmission lines.
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FIGURE 2.3: Symbols for the Josephson junction. (a) The Josephson
junction with the capacitance CJ. (b) Symbol putting together the
Josephson energy EJ and the self-capacitance for simplicity.

The energy stored in a Josephson junction can be calculated by integrating the
electrical power in the Josephson junction with respect to time,

U =
∫ t

0
dt′ VIs =

h̄
2e

Ic

∫ t

0
dt′

dφ(t)
dt

sin φ(t) = EJ(1 − cos φ), (2.15)

where EJ = (h̄/2e)Ic is a Josephson energy. The Josephson inductance can be rewrit-
ten with the Josephson energy as

LJ =

(
h̄
2e

)2 1
EJ

. (2.16)

Besides the inductance, the Josephson junction has a capacitance, CJ, due to its
geometry of the two spatially-separated superconducting electrodes (see Fig 2.3).
This defines a charging energy at the Josephson junction

EC =
(2e)2

2CJ
. (2.17)

Therefore, in the linear regime, the Josephson junction is equivalent to an LC-circuit
with a resonance frequency

ωp =
1√
LJCJ

. (2.18)

This frequency is called the plasma frequency of the Josephson junction.
Here, we present a remark regarding operators used to quantize the electrical

circuit. For the linear circuits, we used the flux ϕ and the charge Q as conjugate vari-
ables (2.5). However, when treating the Josephson junction, the charge is quantized
in units of 2e because Cooper pairs pass across the insulating barrier and contribute
to the supercurrent. Then, it is convenient to use the number of Cooper pairs,

n =
Q
2e

, (2.19)

instead of the charge. Moreover, the phase variable φ is used as the conjugate vari-
able to n. The phase is related to the flux through the second Josephson relation (2.13)
as

φ =
2e
h̄

ϕ. (2.20)
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FIGURE 2.4: Circuits for three kinds of superconducting qubits; (a)
charge qubit, (b) transmon qubit, (c) flux qubit. The red lines repre-
sent the Cooper-pair box.

Thus, the phase and the number of Cooper pairs satisfy the following commutation
relation:

[n, φ] = i. (2.21)

This non-linear element brings a quantum many-body effect under the dissi-
pation. When a single Josephson junction is Ohmically shunted by a resistor, the
Josephson junction shows a quantum phase transition due to the dissipation by the
resistor, which is known as Schmid transition [45]. When the resistance R is larger
than a resistance quantum, RQ = h/(2e)2, the Josephson junction becomes insu-
lating at zero temperature while when R < RQ, it becomes superconducting. This
transition is related to the charge localization and has been studied theoretically in
many literature [46, 47, 48, 49]. Recently, by replacing the normal resistor with the
transmission line with the tunable impedance on superconducting circuits, the dy-
namical property was addressed in the wide parameter region [50]. We note that the
Schmid transition has a different universality from a quantum phase transition in
the Ohmic spin-boson model, which will be discussed in Section 2.5.

2.3 Superconducting qubits

A qubit is realized by a small quantum system consisting of two states. Among
possible implementations of qubits in physical systems, a superconducting qubit is
one of the most hopeful candidates due to its high feasibility and readout accuracy.

Generally, there are many states more than two in closed superconducting cir-
cuits. To use them as qubits, they have to be reduced to the effective two-state sys-
tems, i.e., the lowest two energy states are separated well from other higher states
by utilizing the non-linearity of the Josephson junctions. In this section, we review
three types of superconducting qubits, i.e., a charge qubit, a transmon qubit, and a
flux qubit.

2.3.1 Charge qubit

The charge qubit is the simplest superconducting qubit which has been first imple-
mented experimentally [10]. The charge qubit consists of a single Josephson junction
with the large charging energy, the gate capacitance Cg, and the gate voltage Vg as
shown Fig. 2.4 (a). The tiny superconducting island surrounded by the Josephson
junction and the gate capacitance is called a Cooper-pair box (indicated by the red
line in Fig. 2.4 (a)). For the charge qubit, it is convenient to adopt the charge states as
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FIGURE 2.5: Energy spectrum (n = 0; blue, 1; green, 2; red) of Hamil-
tonian (2.24) as a function of the number of Cooper pairs induced by
the gate voltage ng for different EJ/EC = (a) 0.25; charge qubit, (b) 10;
transmon qubit. The energy levels are normalized by the first transi-
tion energy E10 = E1 − E0 at ng = 1/2. The minimum energy is set to
the origin of energy.

basis states, where the states of the qubit are characterized by the number of Cooper
pairs across the Josephson junction.

The Hamiltonian of the charge qubit is given by

H =
(Q − Qg)2

2(CJ + Cg)
+ EJ (1 − cos φ) , (2.22)

where Q is an excess charge in the Cooper-pair box, i.e., the charge measured from
its neutral state and φ is the phase difference across the Josephson junction. For
convenience, we introduce new variables, the number of excess Cooper pairs, n =
Q/(2e) and ng = Qg/(2e). The latter can be tuned by the gate voltage as ng =
CgVg/(2e). The operator e±iφ changes the number of Cooper pairs in the Cooper-
pair box by ∓1 because the phase and the charge are conjugate to each other (see
Eq. (2.21)). The cos-term in the Josephson energy is then expressed in the charge
basis {|n⟩} as

⟨n| cos φ |m⟩ = ⟨n| eiφ + e−iφ

2
|m⟩ = δn,m+1 + δn,m−1

2
. (2.23)

Therefore, the Hamiltonian of the charge qubit is written on the charge basis as

H =
∞

∑
n=−∞

EC(n − ng)
2 |n⟩ ⟨n| −

∞

∑
n=−∞

EJ

2
(|n⟩ ⟨n + 1|+ |n + 1⟩ ⟨n|) . (2.24)

where EC = (2e2)/(CJ + Cg) and we have dropped the constant term.
The energy spectrum of the Hamiltonian (2.24) is shown as a function of ng in

Fig. 2.5. At large charging energies, EJ/EC < 1, it is clear that the charging energy
makes the energy spectrum with periodic parabolas and the Josephson energy opens
an energy gap EJ at crossing points. From Fig. 2.5 (a), one can observe two features
of the energy spectrum for the charge qubit. First, in contrast with the LC-circuit (see
Eq. (2.9)), the energy spectrum has an anharmonicity due to the non-linearity of the
Josephson junction. This anharmonicity plays a crucial role in using this circuit as a
qubit. Second, the energy spectrum is not flat. This indicates that the charge qubit is
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sensitive to the charge noise, resulting in a reduction in the coherence time.
When we set ng to a half-integer, which is called a sweet spot, the lowest two en-

ergy levels are separated well from other energy levels. By neglecting higher energy
levels except for the lowest two levels, the Hamiltonian of the charge qubit becomes

H =
EC

4
(|0⟩ ⟨0|+ |1⟩ ⟨1|)− EJ

2
(|0⟩ ⟨1|+ |1⟩ ⟨0|) . (2.25)

From this form, it is clear that the circuit can be reduced to a quantum two-level sys-
tem; two states being degenerate in the charge basis, |0⟩ or |1⟩, correspond that the
number of excess Cooper pairs in the Cooper-pair box is 0 or 1. Since the spectrum
curvature around sweet spots is small, the effect of the charge noise can be reduced
there.

2.3.2 Transmon qubit

In order to overcome the problem of the short coherence time, the transmon qubit,
which is an abbreviation of “transmission line shunted plasma oscillation qubit”,
was developed in 2007 [51, 52]. The idea to achieve a long coherence time is to
increase a ratio EJ/EC. At large ratios, EJ/EC ≫ 1, the energy spectrum becomes
flat and the transition energy between the ground and first-excited states becomes
∼
√

2EJEC for arbitrary values of ng [51], as shown in Fig. 2.5 (b). This means that the
transmon qubit is insensitive to the charge noise, and it allows the transmon qubit
to have a long coherent time, > 100 µs, as observed in a recent experiment [53].

To increase the ratio EJ/EC, the Cooper-pair box is shunted by a large capacitance
Cs as shown in Fig.2.4 (b). This additional capacitance lowers the charging energy
EC = (2e2)/(CJ + Cg + Cs), resulting in the increase of the ratio EJ/EC. Note that the
circuit anharmonicity is reduced by increasing the ratio EJ/EC to realize the insen-
sitivity to the charge noise. As a result, the transmon qubit gets a longer coherent
time at the expense of its anharmonicity. One might think that we need to consider
not only the two lowest levels but also the higher levels due to weak anharmonicity.
Actually, since the transmon qubit is coupled to the heat bath with a wide spectrum,
the thermal excitation to the higher levels is relevant in general. However, in a typi-
cal experimental situation, the splitting energy of the transmon qubit is of the order
of 0.5 K, and therefore the thermal population of the third level is sufficiently small
at low temperatures ≲ 0.2 K.

2.3.3 Flux qubit

Finally, we explain another famous superconducting qubit called the flux qubit [54,
55]. While the charge basis is considered as a convenient basis in the charge qubit,
we use the flux (or phase) basis in the flux qubit. The flux qubit consists of a closed
superconducting circuit interrupted by three Josephson junctions with an external
flux ϕext through the loop as shown in Fig. 2.4 (c).

Let us start with the Lagrangian. The Lagrangian of the flux qubit is expressed
by a sum of the Lagrangian for each Josephson junction as

L = ∑
i=1,2,3

[
CJ,i

2
ϕ̇2

i + EJ,i cos (ϕi/ϕ0)

]
, (2.26)

where CJ,i, EJ,i, and ϕi are the Josephson self-capacitance, the Josephson energy, and
the flux difference of the Josephson junction i, respectively, and ϕ0 = h/(2e) is the



12 Chapter 2. Review of Superconducting Circuits

•••

FIGURE 2.6: (a) Schematic of the quantum Rabi model and (b) its
superconducting circuit. The transmon qubit is coupled capacitively
to the LC-circuit.

flux quantum. Here, we introduce an ununiformity to the circuit by setting that the
Josephson junctions i = 1 and 3 are identical with EJ,1 = EJ,3 = EJ and CJ,1 = CJ,3 =
CJ and the central Josephson junction i = 2 has reduced parameters EJ,2 = αEJ and
CJ,2 = αCJ with α < 1. Since the flux through the superconducting loop is quantized
due to the single-valued order parameter, the fluxes in the Josephson junctions are
related to the external flux,

ϕ1 + ϕ2 − ϕ3 =
ϕext

2π
. (2.27)

Eliminating the variable ϕ2 by this relation and introducing new variables ϕ± =
(ϕ3 ± ϕ1)/2, the Hamiltonian can be written as [56]

H =
Q2

−
8(1 + α)CJ

+
Q2

+

8CJ
− EJ [2 cos φ+ cos φ− + α cos(ϕext/ϕ0 + 2φ−)] , (2.28)

where φ± = ϕ±/ϕ0 is the phase variable and Q± are conjugate variables to the flux
ϕ±. When setting the external flux to be half of the flux quantum, ϕext = ϕ0/2,
the sum of the Josephson energies takes two minima at φ+ = 0. The two lowest
energy states correspond to clockwise or anti-clockwise circular supercurrents in the
superconducting loop. The energy splitting between the two lowest energy states is
induced by the quantum tunneling, which is small enough to neglect other higher
energy states. Thus, the circuit for the flux qubit can be truncated into the two-level
system.

2.4 Circuit-QED

We have introduced several elements of the superconducting circuits (the LC-circuit,
the transmission line, and the superconducting qubits) so far. By combining them
together, we can create an interacting quantum system without any resistive loss
experimentally. This endeavor is referred to as the circuit quantum electrodynam-
ics (circuit-QED) [12]. In this section and the next section, we briefly introduce two
important models, i.e., the quantum Rabi model and the spin-boson model, both of
which will be studied in the later chapters; The former is investigated from the view-
point of heat transport in Chapter 5 and the latter in the context of the microwave
scattering experiment in Chapter 3.
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Quantum Rabi model

The quantum Rabi model describes a two-level system coupled to a single bosonic
mode or one harmonic oscillator [57] (see Fig. 2.6 (a)). On the superconducting cir-
cuits, such a minimum hybrid system is realized by a transmon qubit capacitively
coupled to an LC-circuit as shown in Fig. 2.6 (b). The Hamiltonian is given by

H = − h̄∆
2

σx + h̄Ωb†b + h̄gσz

(
b + b†

)
, (2.29)

with the transition frequency of the two-level system ∆, the Pauli matrix σi={x,y,z},
the resonant frequency of the bosonic mode Ω, the bosonic annihilation (creation)
operator b† (b), and the coupling strength g.

Although the quantum Rabi model looks very simple, the analytical solution
is non-trivial [58]. When the coupling between the two-level system and the sin-
gle bosonic mode is weak (g ≪ Ω) and the resonant frequency is in the vicinity
of the transition frequency (Ω ∼ ∆), we can employ the rotating wave approxima-
tion. Then, the quantum Rabi model is reduced to the Jaynes-Cummings model [59],
whose Hamiltonian is given by

H =
h̄∆
2

τz + h̄Ωb†b + h̄g
(

τ+b + τ−b†
)

. (2.30)

where the Pauli matrix τi is obtained by rotating σi along y-axis by π/2, i.e., σx =
−τz, σy = τy, σz = τx. The Jaynes-Cummings model has been investigated for a long
time in the field of quantum optics because the rotating-wave approximation is valid
for usual experimental conditions. However, as the coupling increases, the counter-
rotating terms cannot be neglected and therefore the rotating wave approximation
breaks down. We should note that the ultra-strong coupling (g/Ω = 0.1 ∼ 1) or the
deep-strong coupling (g/Ω > 1) [60, 61] can be realized in the superconducting cir-
cuits. For example, the deep-strong coupling g/Ω = 1.3 has been achieved in the re-
cent experiment on the superconducting circuit [62]. The ultra-stong (or deep strong)
coupling regime in the circuit-QED has been attracting the interest of researchers be-
cause rich physics associated with the higher-order and non-perturbative effect is
expected.

Now, it is instructive to derive the Hamiltonian (2.29) of the quantum Rabi model
from the superconducting circuit. Let us consider the transmon qubit with the Joseph-
son energy EJ, the Josephson capacitance CJ, and the shunted capacitance Cs coupled
to the LC-circuit with the inductance L and the capacitance C through a capacitance
Cg, as shown in Fig. 2.6 (b). The Lagrangian of this circuit is written as

L =
C
2

ϕ̇2 − 1
2L

ϕ2 +
Cq

2
ϕ̇2

q + EJ cos(ϕq/ϕ0) +
Cg

2
(
ϕ̇ − ϕ̇q

)2 , (2.31)

where ϕ and ϕq are the fluxes at the ends of the LC-circuit and the transmon qubit,
respectively, and Cq = Cs + CJ. By introducing the charge variables conjugate to the
fluxes as

Q =
∂L
∂ϕ̇

= Cϕ̇ + Cg
(
ϕ̇ − ϕ̇q

)
, (2.32)

Qq =
∂L
∂ϕ̇q

= Cqϕ̇q + Cg
(
ϕ̇ − ϕ̇q

)
, (2.33)
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we obtain the Hamiltonian as

H =
1

2Ceff
Q2 +

1
2L

ϕ2︸ ︷︷ ︸
LC-circuit

+
1

2CJ,eff
Q2

q − EJ cos(ϕq/ϕ0)︸ ︷︷ ︸
transmon qubit

+
Cg

CΣ
QQq︸ ︷︷ ︸

interaction

, (2.34)

where C2
Σ = CCg + CCq + CgCq, C−1

eff = [C(Cg + Cq)2 + CqC2
g + CgC2

q]/(2C4
Σ), and

C−1
J,eff = [CC2

g + Cq(C + Cq)2 + CgC2]/(2C4
Σ).

By quantizing the charge and flux variables of the LC-circuit in the same manner
as Section 2.1 and replacing Qq with 2en, we obtain

H = h̄Ωb†b + ECn2 − EJ cos(ϕq/ϕ0) + An
(

b + b†
)

, (2.35)

where Ω = 1/
√

CeffL, EC = e2/(2CJ,eff), and A = 2eCg/C2
Σ
√

Ceffh̄Ω/2. Here, the
constant terms have been dropped. Finally, assuming EJ/EC > 1, the transmon
qubit is reduced to the two-level system as explained in Section 2.3, and then we
obtain the coupling strength in the model Hamiltonian (2.29) as

h̄g = |e|
CgC1/2

eff

C2
Σ

√
h̄Ω
(

EJ

2EC

)1/4

. (2.36)

2.5 Spin-boson model

As described in Section 2.4, the quantum Rabi model is a two-level system cou-
pled to a single electromagnetic mode. Here, we consider a two-level system cou-
pled to many electromagnetic modes (harmonic oscillators), which is known as the
spin-boson model [16, 17]. The spin-boson model is one of the most fundamen-
tal models for open quantum systems. The description of the environment using
harmonic oscillators was originally considered in the context of the Brownian mo-
tion [63] and macroscopic quantum tunneling [64]. Subsequently, the spin-boson
model was intensively studied to understand the decoherence process in the two-
level system [16]. It has also been used in the fields of superconducting circuits to
describe the relaxation of a qubit due to coupling to the environment [65]. The spin-
boson model is described by the Hamiltonian

H = − h̄∆
2

σx − ϵσz︸ ︷︷ ︸
two-level system

+∑
k

h̄ωkb†
k bk︸ ︷︷ ︸

bath

− σz

2 ∑
k

h̄λk

(
b†

k + bk

)
︸ ︷︷ ︸

interaction

, (2.37)

where σi={x,y,z} is the Pauli matrix operator, ∆ and ϵ is a transition frequency and a
detunning energy of the two-level system, respectively, b†

k (bk) is an annihilation (a
creation) bosonic operator in the bath, ωk is the frequency of the bosonic mode k,
and λk is the coupling strength between the two-level system and the bosonic mode
k. The properties of the bath are characterized by a spectral density

I(ω) ≡ ∑
k

λ2
kδ(ω − ωk). (2.38)
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FIGURE 2.7: Renormalization flow of the anisotropic Kondo model.

The spectral density is commonly parameterized as

I(ω) = 2αω

(
ω

ωc

)s−1

e−ω/ωc , (2.39)

where α is a dimensionless coupling strength and ωc is a cutoff frequency. The prop-
erty of this model strongly depends on the exponent s. The cases of s < 1, s = 1, and
s > 1 represent sub-Ohmic, Ohmic, and super-Ohmic dissipations, respectively.

2.5.1 Kondo problem for the Ohmic case

The quantum many-body effect becomes important in the spin-boson model if the
interaction between the two-level system and the environments is strong enough.
This is indicated by the fact that the Ohmic spin-boson model is equivalent to the
anisotropic Kondo model [16, 17]. The Kondo problem has been a central topic
in condensed matter physics since the phenomenon of the electric resistivity min-
ima in metals with magnetic impurities [66] was explained by Jun Kondo in the
1960s [67]. By using the perturbation theory, he showed that the resistivity minima
are caused by the spin-exchange process between a magnetic impurity and conduc-
tion electrons in the metal [68]. Nowadays, it is known that the ground state forms
a many-body singlet state between the local spin of the magnetic impurities and the
conduction electrons, which is called the Kondo singlet. This has been clarified by
several theoretical methods such as the poor man’s scaling [69], the Wilson’s nu-
merical renormalization group [70]., the local Fermi liquid theory [71], and the exact
solutions [72, 73]. The many-body effect induced by an interaction between mag-
netic impurities and conduction electrons is called the Kondo effect. Recently, the
Kondo effect has been studied in various fields, e.g., metal surfaces [74, 75], quan-
tum dots [76, 77], and cold atoms [78].

The Hamiltonian of the anisotropic Kondo model is given by

H =
J∥
4L

σz ∑
k,k′,s

sc†
k,sck′,s +

J⊥
2L ∑

k,k′

(
σ+c†

k,↓ck′,↑ + σ−c†
k,↑ck′,↓

)
+ ∑

k,s
ϵk,sc†

k,sck,s, (2.40)

where σ± = (σx ± iσy)/2, L is a system size, and ck,s (c†
k,s) is an annihilation (a

creation) operator of the conduction electron with the wavenumber k and the spin
s(=↑, ↓), and ϵk,s is an energy of the conduction electron measured from the Fermi
energy. The J∥ term describes the spin-conserved scattering and the J⊥ term de-
scribes the spin-flip one. The anisotropic Kondo model has a quantum phase tran-
sition between the ferromagnetic (J∥ < 0) and antiferromagnetic (J∥ > 0) phases at
zero temperature as indicated by the renormalization group analysis (see the flow
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FIGURE 2.8: Microwave spectroscopy of the Ohmic spin-boson
model. (a) Schematic of the spin-boson model in a superconducting
circuit consisting of the flux qubit and a transmission line. (b) The mi-
crowave transmission spectrum as a function of the probe frequency
f and the external flux Φε. These figures are taken from Ref. [81].

diagram in Fig. 2.7). This transition belongs to the Berezinskii-Kosterlitz-Thouless
(BKT) universality class [79, 80]. In the antiferromagnetic phase, the divergence of
the coupling strengths along the renormalization flow indicates the formation of the
Kondo singlet where the local spin is screened completely by the conduction elec-
trons.

By using the bosonization technique [18], the anisotropic Kondo model can be
mapped to the Ohmic spin-boson model with the following correspondence:

∆
ωc

= ρJ⊥ cos2
[

arctan
(

πρJ∥
4

)]
, (2.41)

α =

[
1 − 2

π
arctan

(
πρJ∥

4

)]2

, (2.42)

where ρ is a density of states of the conduction electrons. From this equivalence,
the Ohmic spin-boson model also has a quantum phase transition at α = 1, which
corresponds to J∥ = 0 in the anisotropic Kondo model.

2.5.2 Recent experiment for the Ohmic case

The superconducting circuit is an ideal platform to investigate the spin-boson model
using microwave spectroscopy experimentally because a typical superconducting
qubit has an energy scale compatible with the microwave (∆/2π ∼ 10 GHz). More-
over, the superconducting qubit coupled to the transmission line can be controlled
precisely, and therefore we can obtain accurate experimental data.

In 2017, Pol Forn-Díaz et al. have realized a superconducting circuit described
by the Ohmic spin-boson model using a flux qubit and a transmission line. They
have observed clearly that the microwave transmission shows the parabolic trace
(sharp dips), corresponding to the splitting tunneling frequency of the qubit, as a
function of the probe frequency and the external flux, which controls the splitting
tunneling frequency of the qubit (see Fig. 2.8) [81]. This sharp dip indicates that the
quantum coherence of the two states of the flux qubit remains because the coupling
between the flux qubit and the transmission line is weak enough (α = 0.07). So far,
the signatures of the Kondo effect have not been observed experimentally yet, but
it will be done in the near future. Recently, the experimental attempts to observe
many-body effects using microwave spectroscopy are actively performed [24, 82].



2.6. Josephson-junction chain 17

••• •••

FIGURE 2.9: Josephson-junction chain consisting of circuit elements,
Josephson junctions with the Josephson energy EJ and the Josephson
capacitance CJ, ground capacitances Cg. The elementary cell length is
a. The blue dots represent the superconducting islands.

As described above, the Ohmic spin-boson model has been studied well both
theoretically and experimentally because it is related to the Kondo problem [21, 23]
and the strategy of its realization has been established in the superconducting cir-
cuit using standard superconducting elements [81, 83]. Compared with the Ohmic
case, there is little known about the microwave spectroscopic properties for the
non-Ohmic case (the sub-Ohmic and super-Ohmic cases) in the superconducting cir-
cuits. Particularly, the sub-Ohmic spin-boson model shows a quantum phase tran-
sition and then is an important model to study the dissipative quantum transition
in the well-controllable system. We study quantum critical phenomena through mi-
crowave spectroscopy in Chapter 3.

2.6 Josephson-junction chain

In the previous section, we considered the spin-boson model which is a dissipa-
tive zero-dimensional object. Here, we consider a one-dimensional object, i.e., the
Josephson-junction chain, shown in Fig. 2.9. The one-dimensional Josephson-junction
chain is important not only for many practical applications in superconducting quan-
tum circuits but also for fundamental quantum physics. Actually, the Josephson-
junction chain shows several many-body effects due to the Coulomb interaction be-
tween Cooper pairs.

2.6.1 Superinductor

In the linear regime, the Josephson junction behaves as the inductance, as discussed
in Section 2.2, and therefore the one-dimensional Josephson-junction array can be
regarded as a transmission line with the high impedance. This high-inductance low-
loss element is known as a superinductor.

Using Kirchhoff’s current law to the lumped-element model, we can easily obtain
the dispersion relation of the Josephson-junction chain as

ω(k) =
v|k|√

1 + (kv/Ω)2
, (2.43)

where v = a
√

2EJEg/h̄ is the plasmon velocity, Ω =
√

2EJEC/h̄ is the plasma fre-
quency, and a is the elementary unit length. Here, EJ is the Josephson junction
energy, Eg = (2e)2/(2Cg) is the charging energy at the ground capacitance Cg,
and EC = (2e)2/(2C) is the charging energy at the Josephson capacitance C. As
shown in Fig. 2.10, for the low frequency, we obtain the linear dispersion relation,
ω(k) ≈ v|k|. These sound-like modes are called plasmons. For typical values of
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FIGURE 2.10: Dispersion relation of the Josephson-junction chain. v
is the plasmon velocity, Ω is the plasma frequency, a is the elementary
cell length, and ℓsc is the screening length.

a ∼ 1 µm, EJ ∼ 1 GHz, and Cg ∼ 0.1 fF [24], the plasma velocity can be estimates
as v ∼ 106 ms−1. Compared with the velocity of light in a vacuum, the photonic
modes in the Josephson-junction chain (plasmons) are slower by two orders. The
ultraslow plasmons lead to a high impedance Z ∼ 10 kΩ for the Josephson-junction
chain. As in the vacuum quantum electrodynamics, quantum fluctuations of fields
in the Josephson-junction chain are controlled by the effective fine structure constant
α = Z/RQ, where RQ = h/(2e)2 ≈ 6.5 kΩ is the resistance quantum for Cooper
pairs [84]. While in the vacuum quantum electrodynamics, the fine structure con-
stant is small (α = 1/137 corresponding to Z ≈ 377 Ω), the Josephson-junction chain
can have a large effective fine constant α is of the order of 1. Thus, the Josephson-
junction chain can achieve a one-dimensional superconducting element with strong
quantum fluctuations.

When focusing on the low-frequency modes with the linear dispersion relation,
we need to introduce the ultraviolet cutoff. It is the plasma frequency at which the
dispersion relation becomes flat ω(k) ≈ Ω as shown in Fig. 2.10. This means that the
plasmon does not propagate through the Josephson-junction chain due to the charge
screening by the surrounding medium. Moreover, there is another cutoff scale that
comes from the discreteness of the Josephson-junction chain where elementary cir-
cuits are located with the spacing of a. The shortest wavelength is λ = 2a which
means that the plasmons oscillate with π between the nearest-neighbor cells and
corresponds to k = 2π/λ = π/a.

2.6.2 Lagrangian

In 1984, Mark Bradley and Sebastian Doniach theoretically discussed the Josephson-
junction chain in their pioneering work and predicted that the Josephson-junction
chain exhibits the superconductor-insulator transition (SIT) at zero temperature [30].
This phase transition is driven by the competition between the charge fluctuation
and the phase fluctuation and belongs to the Berezinski–Kosterlitz–Thouless (BKT)
universality class. For EJ ≪ Eg, the Josephson-junction chain becomes an insulator
because the charge fluctuation is strongly suppressed by the Coulomb blockade. On
the contrary, for EJ ≫ Eg, the Josephson-junction chain is in the superconducting
phase due to large charge fluctuation.
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The Lagrangian for the one-dimensional Josephson-junction chain of the length
d is given by

L =
∫ d

0
dx
{

h̄
2πKv

[
θ̇(x, t)

]2 − h̄v
2πK

[∂xθ(x, t)]2 +
Λ
a

cos [2θ(x, t)]
}

, (2.44)

where θ(x, t) is a local field associated with the accumulated charge, i.e., ρ(x, t) =

−h̄/(2e)∂xθ(x, t) is the density of the Cooper pairs, and K = π
√

EJ/(2Eg) is the
Luttinger parameter (for a detailed derivation, see Appendix B). At the transmon
limit (EJ ≫ EC), the quantum phase slip amplitude is written as [85, 86]

Λ =
8√
π

(
2E3

J EC
)1/4

e−
√

32EJ/EC . (2.45)

Note that, to derive the Lagrangian (2.44), we have used the continuous approxima-
tion which is valid for small ground capacitance Cg ≪ C (or Eg ≫ EC), correspond-
ing to the large charge screening length ℓsc = a

√
C/Cg ≫ a [87]. The Lagrangian

for the Josephson-junction chain (2.44) is nothing but the sine-Gordon model [32].
The Luttinger parameter is related to the low-frequency impedance of the chain as
K = RQ/(2Z). Namely, it is also related to the fine structure constant as α = 1/(2K).
This relation indicates that the Luttinger parameter controls the quantum fluctua-
tions of the Josephson-junction chain. Since the Josephson-junction chain can realize
a large fine structure constant in the experiment [88], the Josephson-junction chain
provides an appropriate platform to investigate the property of modes in the insu-
lating phase experimentally [89]. In this thesis, we focus on the classical limit K ≪ 1
(EJ ≪ Eg) in which the Josephson-junction chain is in the deep insulating phase.

We summarize the magnitude relation between three characteristic energy scales,
i.e., the Josephson energy EJ, the charging energy at the ground capacitance Eg, and
the charging energy at the Josephson capacitance EC, in this thesis:

• EJ ≪ Eg · · · Classical limit (K ≪ 1). The charge fluctuation is frozen and the
Josephson-junction chain is in the deep insulating phase.

• EC ≪ EJ · · · Transmon limit. The energy spectrum is nearly harmonic and
each energy band is narrow. The amplitude of quantum phase slips is expo-
nentially small (Λ ≪ Ω).

• EC ≪ Eg · · · Long-range Coulomb interaction (ℓsc ≫ a). The ground capaci-
tance is small (Cg ≪ C).

In a typical experiment [88], we can confirm that the above conditions are satisfied;
EJ/EC ∼ 20 and EC/Eg ∼ 10−4.

2.6.3 Superconductor-insulator transition

The sine-Gordon model (2.44) is one of the most studied models of one-dimensional
field theory [32]. It is well known that the sine-Gordon model processes a quan-
tum phase transition at K = 2 between massless (the gapless spectrum; K > 2) and
massive (the gapped spectrum; K < 2) phases by changing the Luttinger parame-
ter K, and it belongs to the BKT universality class. This BKT-type quantum phase
transition corresponds to the SIT in the Josephson-junction chain. In Fig. 2.11, we
show the renormalization group flow diagram of the sine-Gordon model on the m-
K plane, where m = 2π

√
2ΛEJ/h̄ is the mass. At K < 2, the cosine term in the
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FIGURE 2.11: Flow diagram of the sine-Gordon model at zero tem-
perature.

••• •••

FIGURE 2.12: Josephson-junction chain with the disorder via random
offset charges induced by random gate voltages vn.

sine-Gordon model (2.44) is relevant and then the sine-Gordon model is always in
the massive phase (m → ∞). This phase corresponds to the insulating phase in the
Josephson-junction chain. At K > 2, there are two fates. If the mass is larger than
a critical mass mc, the sine-Gordon model is in the massive phase (the insulating
phase). If m < mc, the cosine term becomes irrelevant and the sine-Gordon model is
in the massless phase (m → 0), which corresponds to the superconducting phase in
the Josephson-junction chain. Then, the Josephson-junction chain can be effectively
described by the Luttinger liquid, for which the charge density wave (CDW) can
propagate ballistically [32].

2.7 Disordered Josephson-junction chain

In realistic systems, the disorder is inevitable and plays an important role in the
Josephson-junction chain. Among various types of disorder [90], the most common
and significant type of disorder is the random offset charges via the ground capaci-
tance (see Fig. 2.12).

2.7.1 Random offset charges

In the presence of the random offset charges, the charging energy at the ground
capacitances (B.5) is modified as

ECoulomb =
∫ d

0
dx aEg [∂xq(x, t)− ρb(x)] . (2.46)
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Here, ρb(x) is the time-independent density of coarse-grained offset charges with
short range correlations ⟨ρb(x)ρb(y)⟩ ∝ δ(x − y), where ⟨· · ·⟩ indicates disorder av-
eraging. Note that there are three characteristic timescales; the time scale of offset
charge fluctuation τc, that of the plasmon propagation τplasmon, and that of experi-
mental measurement τexp. In the experiment, the timescale for the variation of the
configuration of the offset charges is τc ∼ 1 min [91]. Then, the timescale for scram-
bling the random offset charges in the Josephson-junction chain can be estimated as
τc/N ∼ 0.05 sec, which is much larger than τplasmon. Therefore, we can assume that
the random offset configuration is static in all subsequent calculations, i.e., the den-
sity of states of the random offset charges is independent of time. On contrary, the
time for gathering and averaging each experimental data, τexp, is sufficiently longer
than τc/N, which justified that observables are given by the disorder averaged val-
ues with respect to the random offset charge configuration.

Now, by introducing a phase field of the quantum phase slip amplitude (the
Aharonov-Casher phase) [92, 93]

χ(x) = 2π
∫ x

dy ρb(y), (2.47)

the total Lagrangian is expressed by the random phase sine-Gordon model:

L =
∫ d

0
dx
{

h̄
2πKv

[
θ̇(x, t)

]2 − h̄v
2πK

[∂xθ(x, t)]2 +
Λ
a

cos [2θ(x, t) + χ(x)]
}

. (2.48)

The random phase field is characterized by vanishing average,

⟨cos χ(x)⟩ = ⟨sin χ(x)⟩ = 0, (2.49)

and variance,

σ2 =
∫ d

0
dx ⟨cos χ(x) cos χ(0)⟩ =

∫ d

0
dx ⟨sin χ(x) sin χ(0)⟩ . (2.50)

2.7.2 Superfluid-Bose glass transition

Even when the random offset charges exist in the Josephson-junction chain, the SIT
still occurs. However, in this case, the insulating phase becomes a compressible state,
which is called Bose glass [31], instead of the incompressible Mott insulating state
realized in the absence of disorder. The disorder reduces the effect of the quantum
phase slips.

In 1988, Thierry Giamarchi and Heinz-Jürgen Schulz treated the one-dimensional
bosonic disordered model perturbatively and provided the renormalization group
equations (the Giamarchi-Schulz scaling) [31]:

dK
dl

= −K2

2
D,

dD
dl

= (3 − 2K)D, (2.51)

where D describes the evolution of the quantum phase slip probability. The Giamarchi-
Schulz scaling (2.51) indicates that the transition between the superfluid and Bose
glass occurs at Kc = 3/2, which corresponds to Eg = (2π2/9)EJ and Z ∼ 2.2 kΩ.



22 Chapter 2. Review of Superconducting Circuits

FIGURE 2.13: Two frequency regimes in the disordered Josephson-
junction chain in the deep insulating phase (K ≪ 1); the strongly
localized (ω ≪ ω⋆) and weakly localized (ω ≳ ω⋆) regimes. In the
strongly (weakly) localized regimes, the collective pinning effect is
strong (weak).

2.7.3 Classical limit

In the classical limit (K → 0), the kinetic term in the total Lagrangian (2.48) can be
neglected. Then, the disordered Josephson-junction chain is reduced to a problem
for the interplay of elasticity and disorder that is equivalent to that of the pinning
CDW [94].

Now, we introduce the Larkin length R⋆ [95, 96, 97] on which the static spatial
order is destroyed. For the field variable variation in the length scale of R, the elastic
energy and the pinning energy are estimated ∼ h̄v/(KR) and ∼ Λ

√
R/a, respec-

tively. We further incorporate quantum fluctuations due to the quantum phase slips
by replacing Λ with the renormalized phase slip amplitude Λ(R/ℓsc)−K. Then, the
generalized Larkin length [98] is defined as the length scale at which the elastic en-
ergy and the pinning energy are compatible:

R⋆ =

(
h̄v

2πKΛσ

)2/(3−2K)

. (2.52)

Its corresponding frequency ω⋆ = v/R⋆ is called the Larkin frequency. The diver-
gence of the Larkin length (2.52) at K = 3/2 indicates the superfluid-Bose glass
transition.

Elastic properties on a length scale shorter than the Larkin length (R ≲ R⋆) are
not much affected by the collective pinning. This regime corresponds to excitations
with high frequencies ω ≳ ω⋆, leading to the almost-ballistic propagation of plas-
mons (see Fig. 2.13). On the contrary, at low frequencies ω ≪ ω⋆, the collective
pinning effect due to the disorder drastically changes the excitation spectrum of the
system. In this regime, the density of plasmon modes is determined by the statistics
of distinctive configurations of disorder, which leads to the strong suppression of
the density of modes at low frequencies as [99, 100, 101, 102]

ν(ω) ∝ ω4, (2.53)

for a long chain (d ≫ R⋆).
We note that the collective pinning regime corresponds to R⋆ ≫ σ2 in the classi-

cal limit. Therefore, one may cross over from the collective pinning regime to the in-
dividual pinning regime by increasing the quantum phase slip amplitude Λ. When
we go beyond the classical limit (K ≪ 1), it is known that quantum fluctuations due
to the effect of a finite K increase the Larkin length [103].
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FIGURE 2.14: (a) A Josephson-junction chain. Two chains consisting
of more than 33,000 Josephson junctions are spaces parallel closely.
At the right end, the short-circuit is terminated and, at the left end, a
dipole antenna is connected. (b) The frequency of the reflection mag-
nitude for different devices. The Luttinger parameters are K = 0.5
(red), 0.171 (green), and 0.171 (purple). The ratios of the Josephson
energy and the charging energy are EJ/EC = 582 (red), 16 (green),
and 7 (purple). (c) The frequency dependence of the quality factor for
various devices. These figures are taken from Ref. [89].

2.7.4 Recent experiment

We introduce a recent experiment on ac transport through the disordered Josephson-
junction chain. Even in the deep insulating phase, ac current can flow like a super-
conductor for ω ≫ kBT/h̄. Nevertheless, we can observe traces of insulators in
the frequency dependence of the ac transport. By varying the probe frequency, the
interaction can be controlled effectively in the sense of the renormalization group.

Recently, Roman Kuzmin et al. have investigated the scattering reflection off
a Josephson junction using microwave spectroscopy to reveal the insulating states
for K < 3/2 [89]. They have fabricated a long double-chain consisting of more than
33,000 junctions, as shown in Fig. 2.14 (a). When the ground capacitance of the super-
conducting islands is much smaller than the junction capacitance, the double-chain
can be mapped into a single-chain problem by considering only asymmetric modes
coupled to a dipole antenna [90]. By performing the microwave spectroscopic mea-
surement for this Josephson-junction chain, they obtained the reflection magnitude
as a function of frequency for different devices, as shown in Fig. 2.14 (b). At K ≃ 0.5
and EJ/EC ≃ 500 (red color), we can observe the well-resolved plasmon spectrum
and no signature of the insulating states despite in a smaller K than the insulator
transition value, Kc = 3/2. We define a quality factor by the ratio of the mode fre-
quency to its line width. As the frequency decreases, the quality factor grows and
reaches a high value ∼ 105, as shown in Fig. 2.14 (c). This large quality factor can
be explained by the dielectric loss in the Josephson-junction capacitance (solid line
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in Fig. 2.14 (c)). On contrary, at K ≃ 0.171 and EJ/EC ≃ 7 (purple color), the well-
resolved plasmons do not appear. Instead of them, we can observe the inhomoge-
neous broadening of the standing waves after disorder averaging in the reflection
magnitude. This inhomogeneous broadening, which is caused by the pinning effect
of the CDW, is a signature of the insulating phase. It is remarkable that, opposite
to the well-resolved plasmon region, the quality factor decreases as the frequency is
lowered. This characteristic behavior of the quality factor is observed in the insulat-
ing states. Actually, in the limit of ω → 0, the quality factor is expected to approach
zero, indicating strong suppression of the dc transport. Finally, we note that the de-
vice showing the signature of the insulating phase indeed has large dc resistance of
the order of 1 MΩ, which is inconsistent with a superconductor.

Recently, Manuel Houzet and Leonid Glazman have theoretically clarified the
collective pinning effect of the CDW through the microwave reflection off the Joseph-
son junction chain in the deep insulating phase [98]. However, since the reflection is
related to the local density of modes at the edge of the chain, little is known about the
statistical properties of plasmon waves traveling along the entire chain. Moreover,
from the reflection, we cannot distinguish the forward and backward scatterings.

In Chapter 4, we investigate the transmission of a long Josephson-junction chain
in the deep insulating phase and discuss the contributions of the forward and back-
ward scatterings as well as the statistics of the transmission [40].

2.8 Quantum heat transport

Finally, we introduce recent studies on quantum heat transport in superconduct-
ing circuits, which have been stimulated by the development of the technology of
calorimeters in the last decade [33, 34, 35]. The superconducting circuit is also a
useful platform to study quantum heat transport because of flexible designing and
fine-tuning by external fields. In the superconducting circuit, a circuit element (e.g.,
a superconducting qubit, a superconducting resonator, or their hybridized circuit)
mediates heat by microwave photons between two photon baths (e.g., transmis-
sion lines). Below, we introduce two recent experiments on quantum heat transport
through a resonator-qubit-resonator assembly.

In 2018, Jukka Pekola’s group has observed tunable heat transport through a
resonator-qubit-resonator assembly as a quantum heat valve [104] (see Fig. 2.15).
Two resonators have identical resonant frequencies fr = 6.4 GHz and are coupled
to each other via a transmon qubit, whose splitting frequency fq can be controlled
by external magnetic flux Φ, with the coupling strength g. To study heat transport,
the two resonators are terminated by normal-metal resistors acting as heat baths
with the coupling strength γ, as shown in Fig. 2.15. When treating this circuit, there
are two regimes, i.e., the quasi-Hamiltonian (global) regime (Fig. 2.15 (a); γ ≪ g)
and the non-Hamiltonian (local) regime (Fig. 2.15 (b); γ ≫ g). This separation is
associated with the location of the Heisenberg cut between the classical and quan-
tum worlds [105]. In the quasi-Hamiltonian (QH) regime, the hybridized system
composed of the qubit and the resonators couples to the bare heat baths. Since the
hybridized system shows the multilevel structure, the power is affected strongly
by this multilevel structure as indicated by the QH model in Fig. 2.15 (a). In the
non-Hamiltonian regime, the qubit is coupled to dissipative resonators whose spec-
tral density is Lorentzian centered around the resonance frequency fr. Here, the
heat current flows only for fq = fr, and thus the system acts as the quantum heat
valve. In the bottom panel of Fig. 2.15 (b), we show the experimental (left side) and
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FIGURE 2.15: Quantum heat valve. A transmon qubit (two-level sys-
tem) is capacitively embedded between two superconducting trans-
mission lines (harmonic resonators). Each transmission line is termi-
nated by a normal-metal resistor (heat bath). Panels (a) and (b) show
the schematics of the model (top panels) and the external flux de-
pendence of the heat current flowing into the right (drain) heat bath
for different left (source) heat bath temperatures (lower panels) in the
quasi-Hamiltonian (global) and non-Hamiltonian, respectively. The
data plots are taken from Ref. [104].

theoretical (right side) results for the power as a function of the external flux for
different temperatures. It is observed that the power has several Lorentzian peaks
centered at fluxes corresponding to fq = fr. In both of the quasi-Hamiltonian and
non-Hamiltonian regimes, the theoretical calculation shows good agreement with
the experimental results.

Moreover, by breaking the symmetry of the circuit and using the non-linearity
of the central element, the photonic heat rectification has been demonstrated [106]
in a similar circuit to that in Ref. [104] (see Fig. 2.15). As shown in Fig. 2.16 (a), a
transmon qubit is coupled to two unequal harmonic resonators, whose frequencies
are 2.8 GHz and 6.7 GHz, terminated by heat baths. In the same way as the quantum
heat valve, the splitting tunneling frequency of the transmon qubit can be tuned by
the external flux. Fig. 2.16 (b) shows the external flux dependence of the heat current
in forward (purple lines) and backward (green lines) directions for different three
temperatures. The forward direction corresponds to the flow from the left bath to
the right bath when TL = TR + |∆T|, while the backward direction corresponds to
the flow in the opposite direction when TL = TR − |∆T|. In Fig. 2.16 (c), we show
that, from the data in Fig. 2.16 (b), the external flux dependence of rectification ratio,
R = |Pf|/|Pb|, where Pf and Pb are the heat currents in the forward and backward
directions, respectively. From this figure, one can see that the flux-tunable photonic
heat rectification achieves 10% at maximum.

Quantum heat transport has also been studied in a number of theoretical works
for the last twenty years, and various quantum heat devices such as a quantum heat
valve [104], a quantum rectifiers [36, 106], a quantum heat transistor [107, 108], a
quantum refrigerator [109], and a quantum heat engine [110, 111, 112] have been
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FIGURE 2.16: Quantum heat rectification. (a) Schematic of the pho-
ton diode. The circuit structure is similar to that in Fig. 2.15 but two
resonators are unequal, their resonant frequencies are 2.8 GHz (left
resonator) and 6.7 GHz (the right one), to break the symmetry of the
circuit. The forward and reverse directions are drawn in purple and
green arrows, respectively. (b) The heat current as a function of the
external flux in the forward (purple lines) and backward (green lines)
directions for different temperatures (380 mK, 400 mK, and 420 mK
from bottom to top). (c) The external flux dependence of the rectifi-
cation ratio from data in panel (b), where it is subtracted by minimal
value Rmin. The data plots are taken from Ref. [106].

proposed. The most fundamental model for quantum heat transport is a single su-
perconducting qubit (a two-level system) coupled to two baths described by the
spin-boson model [23, 38]. However, the single superconducting qubit is too sim-
ple to work functionally as a quantum heat device. We also note that the center part
of superconducting circuits in the two experiments on a resonator-qubit-resonator
assembly, which are explained in the previous two paragraphs, looks like the quan-
tum Rabi model introduced in Section 2.4. We point out that little is still known
about quantum heat transport through a resonator-qubit-resonator assembly in the
ultra-strong (or deep-strong) coupling regime.

In Chapter 5, we consider quantum heat transport through a superconducting
qubit embedded between two harmonic resonators, which is described by the quan-
tum Rabi model. We show that the heat transport becomes sensitive to control pa-
rameters in the ultra-strong (or deep-strong) coupling regime. This property is ad-
vantageous for the application of quantum heat devices.
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Chapter 3

Microwave Scattering through a
Superconducting Qubit

In this chapter, we study the microwave scattering in superconducting circuits de-
scribed by the sub-Ohmic spin-boson model. First, we review quantum phase tran-
sition in the sub-Ohmic spin-boson model in Section 3.1. Next, we move to new
results obtained in Ref. [39]. We present a superconducting circuit to realize the sub-
Ohmic spin-boson model and formulate the microwave scattering in this circuit in
Section 3.2. Using the continuous-time quantum Monte Carlo simulation introduced
in Section 3.3, we show that quantum critical phenomena emerge in the frequency
dependence of the microwave reflection in Section 3.4.

3.1 Sub-Ohmic spin-boson model

As described in Section 2.5, the spin-boson model is a fundamental model for de-
scribing a two-level system coupled to bosonic environments [16, 17]. We write the
Hamiltonian again, which consists of three terms, the two-level system HTLS, the
bosonic bath HB, and their interaction HI,

H = HTLS + ∑
ν

HB,ν + ∑
ν

HI,ν, (3.1)

HTLS = − h̄∆
2

σx − ϵσz, (3.2)

HB,ν = ∑
k

h̄ων,kb†
ν,kbν,k, (3.3)

HI,ν = −σz

2 ∑
k

h̄λν,k

(
b†

ν,k + bν,k

)
, (3.4)

and the spectral density is

Iν(ω) = 2ανω

(
ω

ωc

)sν−1

e−ω/ωc , (3.5)

where ν (= L, R) is the bath index and other parameters and operators are the same
as Section 2.5.

In this thesis, we focus on the sub-Ohmic case (s < 1), which has a second-order
phase transition at zero temperature [19, 20, 113, 114, 115, 116, 117, 118]. The quan-
tum phase transition in the sub-Ohmic spin-boson model occurs when the coupling
strength between the two-state system and the environments is tuned to a critical
point αc. For α < αc, the ground state is described by a coherent superposition of
two wavefunctions localized at each well of the two-level system, which is called
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FIGURE 3.1: Schematic of the quantum phase transition in the sub-
Ohmic spin-boson model at zero temperature. For α < αc, the ground
state is a superposition of two states localized at each well (the delo-
calized phase). For α > αc, their coherence is broken and the state of
the system is localized at one of the two wells due to the disappear-
ance of quantum tunneling (the localized phase).

FIGURE 3.2: The detunning energy ϵ dependence of the population
⟨σz⟩ϵ for α < αc (blue line), α = αc (green line), and α > αc (red line).
At the critical point, α = αc, while the population is continuous, its
derivative of ϵ diverges at ϵ = 0. As the coupling increasing, α > αc,
the population jumps discontinuously at ϵ = 0.

as a delocalized phase (see Fig. 3.1). For the stronger coupling, α > αc, the ground
state becomes two-fold degenerate because the coherent superposition is completely
broken due to the disappearance of quantum tunneling between the two wells. This
phase is called a localized phase.

The population of the two-level system ⟨σz⟩ϵ as a function of the detunning en-
ergy ϵ for α < αc, α = αc, and α > αc is shown in Fig 3.2. We regard ⟨σz⟩ϵ as the
“magnetization” in the analogy of the order parameter in a magnetic phase tran-
sition. We also define the static “spin susceptibility” by the first derivative of the
magnetization at ϵ = 0 as

χ0 ≡ lim
ϵ→0

⟨σz⟩ϵ

ϵ
, (3.6)

where ⟨·⟩ indicates the thermal average. The static spin susceptibility is finite for
α < αc, increases as α approaches αc from below, and finally diverges at the critical
point α = αc. In the localized phase (α > αc), the magnetization ⟨σz⟩ϵ jumps discon-
tinuously from −mz to +mz at ϵ = 0, where the constant value mz ≡ limϵ→0+ ⟨σz⟩ϵ

corresponds to the spontaneous magnetization.
The thermal equilibrium properties at the quantum critical point (α = αc) have

been studied in several theoretical works [116, 19]. The critical exponent of the
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imaginary-time spin-spin correlation function, η, is defined as

C(τ) ≡ ⟨σz(τ)σz(0)⟩ ∼ τ−η+1. (3.7)

For 0 < s ≤ 0.5, quantum critical behavior is described by the mean-field theory,
giving a critical exponent [119]

η = 2 − s. (3.8)

This critical exponent has been confirmed by the quantum Monte Carlo simula-
tion [19] and the numerical renormalization group calculations [115, 116, 117, 20]. In
contrast, for 0.5 < s < 1, the critical exponents are non-trivial function of s [120]. So
far, experimental realization of the sub-Ohmic spin-boson model has been discussed
only for s = 0.5 using the transmission line with resistances [121, 122]. However, the
sub-Ohmic bath with arbitrary s has not been discussed.

In the rest of this chapter, we propose a superconducting circuit to realize the
sub-Ohmic spin-boson model with arbitrary s and investigate quantum critical phe-
nomena from the viewpoint of the microwave scattering on that superconducting
circuit [39].

3.2 Formalism for microwave scattering

In this section, we introduce a superconducting circuit to realize the sub-Ohmic spin-
boson model using a charge qubit and an RLC transmission line and formulate the
scattering problem on this superconducting circuit.

3.2.1 Circuit model

Let’s consider a superconducting circuit as shown in Fig. 3.3 for a realization of the
sub-Ohmic spin-boson model. In this circuit, to investigate the microwave scattering
off the sub-Ohmic spin-boson model, the Ohmic bath is also weakly coupled to the
two-level system as a probe system.

First, we consider a charge qubit as a two-level system. As discussed in Sec-
tion 2.3, the charge qubit composed of two Josephson junctions with Josephson
energies EJ,ν and self-capacitances CJ,ν (ν = L, R). The charge states of the qubit
is controlled by a gate voltage Vg via a gate capacitance Cg. Then, the Hamilto-
nian of the charge qubit is given by Eq. (2.24) with a modified charging energy
EC = (2e2)/CΣ where CΣ = CJ,L + CJ,R + Cg. Assuming small Josephson junction
energies, EJ,L, EJ,R ≪ EC, and setting the offset charge as ng = 0.5, we can reduce
the superconducting circuit to the two-level system as discussed in Section 2.3, and
then the Hamiltonian can be written as

HTLS = − h̄∆
2

σx − ϵσz, (3.9)

where the first term describes the Josephson energy and the second term corre-
sponds to detunning from the degenerate gate voltage ng = 0.5. Here, ∆ ≡ EJ/h̄ is
the tunneling frequency. The Pauli operators σi=x,y,z have a two-dimensional Hilbert
space and the eigenstates of σz correspond to the two charge states, |n = 0⟩ and
|n = 1⟩, in the island. In this thesis, we consider the symmetric case (ϵ = 0) and use
only the detunning energy to define the static susceptibility (3.6).
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FIGURE 3.3: (a) A schematic of the model considered in this chap-
ter. The spin-boson model, consisting of a two-level system and a
sub-Ohmic bath, is coupled to an Ohmic bath as a probe. (b) A su-
perconducting circuit realizes the model in panel (a). The two-level
system and the Ohmic bath are realized by the charge qubit and the
transmission line, respectively. The realization of the sub-Ohmic bath
will be discussed later.

Second, we consider the sub-Ohmic bath coupled to the charge qubit, i.e., a sys-
tem described by the spin-boson model with sL = s < 1. Explicit construction of
the sub-Ohmic bath using an RLC transmission line will be discussed in the next
subsection. The interaction between the charge qubit and the sub-Ohmic bath can
be expressed as

HI,L =
eCJ,L

CΣ
σzVL,0, (3.10)

VL,0 = − CΣ

2eCJ,L
∑

k
h̄λL,k

(
bL,k + b†

L,k

)
, (3.11)

where VL,0 is the voltage at the end of the sub-Ohmic bath (see Fig. 3.3 (b)). This
form of the interaction corresponds to the system-environment coupling in the spin-
boson model. Here, we introduce the retarded voltage-voltage correlation function
defined by

GR
V(t) ≡ − i

h̄
θ(t) ⟨[VL,0(t), VL,0(0)]⟩B,L , (3.12)

where θ(t) is the Heaviside step function, VL,0(t) = eiHB,Lt/h̄VL,0e−iHB,Lt/h̄, and ⟨· · ·⟩B,L
indicates an ensemble average with respect to the sub-Ohmic bath, HB,L. Compar-
ing the definition of the spectral density (2.38) and the imaginary part of the Fourier
transformation of GR

V(t), the spectral density can be expressed as

IL(ω) = − 1
πh̄

(
2eCJ,L

CΣ

)2

Im
[

GR
V(ω)

]
. (3.13)
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Moreover, using the linear response theory [123], the voltage-voltage correlation
function, GR

V(ω), is related to the impedance of the sub-Ohmic bath, ZB,L(ω), as
GR

V(ω) = −iωZsub(ω). The relation allows the spectral function to be written in
terms of circuit parameters as

IL(ω) =
1

πh̄

(
2eCJ,L

CΣ

)2

ωRe [ZB,L(ω)] . (3.14)

Note that this expression of the spectral density using the impedance of the bath is
valid for arbitrary baths.

Finally, let us consider a transmission line as an Ohmic bath. It is coupled to
the two-level system weakly as a probe system for the microwave scattering. The
transmission line is described by a continuum limit for a series of LC-circuits as
discussed in Section 2.1. Here, we briefly repeat the theoretical description. The
Hamiltonian of the transmission line is given as

HB,R =
∫ d

0
dx
{

1
2c

[Q(x)]2 +
1
2l

[∂xϕ(x)]2
}

, (3.15)

where c and l are the capacitance and the inductance per unit length, respectively,
and d is the length of the transmission line. The charge density operator Q(x) and the
flux operator ϕ(x) at position x are conjugate to each other, [ϕ(x), Q(y)] = ih̄δ(x −
y). By introducing bosonic annihilation and creation operators as

bR,k =
1√

h̄ωR,kd

∫ d

0
dx e−ikx

[
Q(x)√

2c
− i

√
k2

2l
ϕ(x)

]
, (3.16)

b†
R,k =

1√
h̄ωR,kd

∫ d

0
dx e+ikx

[
Q(x)√

2c
+ i

√
k2

2l
ϕ(x)

]
, (3.17)

respectively, the Hamiltonian can be rewritten in the diagonal form:

HR,B = ∑
k

h̄ωR,kb†
R,kbR,k, (3.18)

where ωR,k = |k|/
√

lc. One can easily check that the commutation relation [bR,k, b†
R,k′ ] =

δk,k′ holds.
Since this transmission line is capacitively coupled to the charge qubit, the cou-

pling Hamiltonian can be written as

HI,R =
eCJ,R

CΣ
σzVR(x = 0), (3.19)

with the voltage in the transmission line

VR(x) = ∑
k

√
h̄ωR,k

dc

(
bR,keikx + b†

R,ke−ikx
)

. (3.20)

Thus, we obtain the spin-boson-type interaction as

λR,k = −2eCJ,R

CΣ

√
ωR,k

h̄dc
. (3.21)
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=

FIGURE 3.4: An RLC transmission line to realize the sub-Ohmic bath.

Plugging λR,k into the definition of the spectral density (2.38), we obtain the Ohmic
spectral density of the transmission line as

IR(ω) =
1

πh̄

√
l
c

(
2eCJ,R

CΣ

)2

ω = αRω, (3.22)

in the limit d → ∞. This means that the transmission line plays the role of the
Ohmic bath, i.e., sR = 1. Note that the spectral function of the transmission line can
be also obtained from the general form (3.14) by substituting the impedance of the
transmission line ZB,R(ω) =

√
l/c.

3.2.2 Realization of the sub-Ohmic bath

Here, we provide a strategy to realize the sub-Ohmic bath using an RLC transmis-
sion line as shown in Fig. 3.4. As mentioned in the previous subsection, the spectral
density is related to the total impedance,

Z−1
L (ω) = Z−1

0 (ω) + iωC0, (3.23)

where Z0(ω) is the impedance of the RLC transmission line and C0 is the capacitance
at the end of the RLC transmission line close to the charge qubit. The relation (3.14)
allows the spectral density of the RLC transmission line to be written as

IL(ω) =
1

πh̄

(
2eCJ,L

CΣ

)2

ĨL(ω), ĨL(ω) = ωRe [ZL(ω)] . (3.24)

Therefore, to realize the sub-Ohmic bath, one needs to design the RLC transmission
line with appropriately frequency-dependent impedance. By solving the recurrence
relation for j ∈ [1, N]:

Z0(ω) = ZL,1(ω), (3.25)

ZL,j(ω) = RL,j + iωLL,j +
1

Z−1
L,j+1(ω) + iωCL,j

(3.26)

with Z−1
L,N+1(ω) = 0, we obtain the impedance of the RLC transmission line, Z0(ω),

numerically.
We first consider a simple circuit to realize the sub-Ohmic bath with s = 0.5.

Then, we expand the circuit model for an arbitrary value of s smaller than 0.5. Fi-
nally, we mention an RLC transmission line for arbitrary s in the range 0 < s < 1.
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FIGURE 3.5: Spectral density of the RLC transmission line as a func-
tion of frequency for different N. The exponent of the spectral den-
sity is 0.5. The circuit elements are set as R = 1 Ω, L = 1 pH, C =
1 pF, C0 = 1 pF.

(i) case for s = 0.5

Let us first consider a uniform RLC transmission line:

Rj = R, Lj = L, Cj = C. (3.27)

Figure 3.5 shows the dimensionless spectral density of the RLC transmission line,
ĨL(ω), for N = 102, 103, 104, and ∞ by solving the recurrence relation (3.26) numer-
ically. Here, the circuit parameters are set as R = 1 Ω, L = 1 pH, C = 1 pF, and
C0 = 1 pF. Note that the case of N = ∞ has been discussed in Ref. [121]. Figure 3.5
indicates that the circuit realizes the sub-Ohmic bath with s = 0.5 for the frequency
range, ω∗ ≪ ω ≪ ωc, where ω∗ and ωc are the low- and high-frequency cutoffs, re-
spectively. From the recurrence relation in Eq. (3.26), these cutoffs can be estimated
as ω∗ = π2/(N2RC) and ωc = C/(RC2

0), respectively, which are shown for N = 103

in Fig. 3.5. Moreover, to observe the robustness in this circuit, we added 10% relative
randomness to the circuit parameters. As shown in Fig. 3.5, the fluctuation due to
the randomness is not visible. Thus, this uniform RLC transmission line is robust to
the randomness in the circuit elements.

(ii) case for 0 < s < 0.5

We next propose an RLC transmission line with spatial dependence circuit elements,

Rj = R
(

j
N

)n

, Lj = 0, Cj = C. (3.28)

Here, n is a positive real number. Figure 3.6 shows the dimensionless spectral den-
sity, ĨL(ω), for n = 2 and N = 102, which is obtained by solving the recurrence
relation (3.26) numerically. The circuit parameters are set as R = 50 mΩ, L = 0 H,
C = 0.2 µF, and C0 = 0 F. According to this figure, the present circuit realizes the
sub-Ohmic bath for the frequency range of ω∗ ≪ ω ≪ ωc, where ω∗ and ωc are the
low- and high-frequency cutoffs, respectively. Randomness in the circuit leads to
small fluctuations but does not change the overall feature of the spectral density for
the case of no randomness by comparing the circuit with 10% relative randomness
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FIGURE 3.6: The frequency dependence of the spectral density of the
RLC transmission line for n = 2 with the exponent 0.25. The circuit
parameters are R = 50 mΩ, L = 0 H, C = 0.2 µF, C0 = 0 F, N = 102.

(blue line) and without randomness (red line). It is noteworthy that the sub-Ohmic
bath can be realized for a wider frequency range extending to N = 102, which is
much less than the case for s = 0.5.

From Eq. (3.26), we can derive, for an arbitrary positive value of n, the spectral
density as (see Appendix C for the detailed derivation)

ĨL(ω) ∝ ω1/(n+2), (ω∗ ≪ ω ≪ ωc). (3.29)

This form means that the present RLC transmission line potentially realizes the sub-
Ohmic bath with s < 0.5 because n is a real positive number. It is consistent with
Fig. 3.6, in which the RLC transmission line with n = 2 realizes the sub-Ohmic bath
with s = 0.25. The low- and high-frequency cutoffs are obtained as

ω∗ =
1

RC

( n
2N

)2
(

1 +
2
√

2
n

)n+2

, ωc =
1

RC

(
2N
n

)n

, (3.30)

respectively, and are shown in Fig. 3.6. Note that as n decreases, the frequency range
in which the spectral density behaves as the sub-Ohmic bath becomes narrower.

(iii) case for 0 < s < 1

Finally, we discuss how to realize the sub-Ohmic spin-boson model with 0 < s < 1.
We assume that the resistances and inductances depend on the position as follows:

Rj = R
(

j
N

)n

, Lj = L
(

j
N

)p

, Cj = C, (3.31)

where n and p are non-negative real numbers. From Eq. (3.26), we can derive an
analytic expression of the spectral density

ĨL(ω) ∝ ω2/(p+2), (ω∗ ≪ ω ≪ ωc), (3.32)
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where the low-frequency cutoff, ω∗, is give by

ω∗ =

[( p
2N

)2(n−p) Rp+2

Ln+2Cn−p

]1/(2n−p+2)

, (3.33)

and the high-frequency cutoff, ωc, is a complex function of the circuit parameters.
Note that although this circuit can realize the sub-Ohmic bath with an arbitrary
value of s in the range of 0 < s < 1, one needs a very large N ≳ 105, to achieve
a sufficient frequency range where the spectral density behaves as the sub-Ohmic
one.

3.2.3 Microwave scattering

As shown in Fig. 3.3 (a), an incident microwave enters from the transmission line
into the charge qubit, and then the reflected microwave is allowed to propagate in
the same transmission line in the opposite direction. Here, we formulate the mi-
crowave scattering using the input-output theory [124, 21, 22] and derive a relation
between the reflection coefficient and the dynamic spin susceptibility of the sub-
Ohmic spin-boson model within the linear response theory.

Let us begin with the total Hamiltonian

H = Hsub +HB,R +HI,R, (3.34)

where Hsub = HTLS +HB,L +HI,L is the Hamiltonian of the sub-Ohmic spin-boson
model. From the Heisenberg equation of motion, the time evolution of the annihila-
tion operator of the transmission line is

ḃR,k(t) =
i
h̄
[H, bR,k(t)] = −iωR,kbR,k(t) + i

λR,k

2
σz(t), (3.35)

where O(t) = eiHt/h̄Oe−iHt/h̄. By integrating the Heisenberg equation of motion (3.35),
its solution is given by [21]

bR,k(t) = e−iωR,k(t−t0)bR,k(t0) + i
λR,k

2

∫ t

t0

dt′ e−iωR,k(t−t′)σz(t′), (3.36)

where t0 is a past time before any excitation mode reaches the two-state system.
The first term represents the free time evolution in the transmission line and the
second term describes the effect of the interaction between the charge qubit and the
transmission line. Similarly, we obtain an alternative solution to Eq. (3.35) as

bR,k(t) = e−iωR,k(t−t1)bR,k(t1)− i
λR,k

2

∫ t1

t
dt′ e−iωR,k(t−t′)σz(t′), (3.37)

where t1 is a future time after the entire excitation mode leaves the two-state system.
The voltages of input and output modes are expressed as

Vin(t) = ∑
k

√
h̄ωR,k

dc

[
e−iωR,k(t−t0)bR,k(t0) + h.c.

]
, (3.38)

Vout(t) = ∑
k

√
h̄ωR,k

dc

[
e−iωR,k(t−t1)bR,k(t1) + h.c.

]
, (3.39)
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respectively. Using Eqs. (3.36)-(3.39), the input and output voltages in the Fourier
space relate to each other as follows:

⟨Vout(ω)⟩ = ⟨Vin(ω)⟩ − i
πh̄CΣ

2eCJ,R
IR(ω) ⟨σz(ω)⟩ , (3.40)

where ⟨·⟩ indicates an average with respect to the total Hamiltonian and IR(ω) is
linear to ω because the transmission line is Ohmic.

Assuming weak coupling between the charge qubit and the transmission line
(αR ≪ 1), the population ⟨σz(ω)⟩ in Eq. (3.40) can be expressed within the linear
response theory as

⟨σz(ω)⟩ = − eCJ,R

CΣ
χsub(ω) ⟨Vin(ω)⟩ . (3.41)

Here, χsub(ω) is the Fourier transformation of the dynamic spin susceptibility of the
sub-Ohmic spin-boson model defined as

χsub(t) ≡
i
h̄

θ(t) ⟨[σz(t), σz(0)]⟩sub , (3.42)

where ⟨·⟩sub indicates an average to the Hamiltonian of the sub-Ohmic spin-boson
model Hsub. Hence, from Eqs. (3.40) and (3.41), we obtain a relation between the
reflection coefficient and the dynamic spin susceptibility as

r(ω) ≡ ⟨Vout(ω)⟩
⟨Vin(ω)⟩ = 1 + i

πh̄
2

IR(ω)χsub(ω). (3.43)

This form indicates that one can calculate the reflection coefficient once one gets
the dynamic spin susceptibility of the sub-Ohmic spin-boson model. In this the-
sis, we perform the continuous-time quantum Monte Carlo simulation to obtain the
dynamic spin susceptibility numerically.

3.3 Continuous-time quantum Monte Carlo method

In this section, we explain the continuous-time Monte Carlo (CTQMC) algorithm [125]
and how to calculate the dynamic spin susceptibility of the sub-Ohmic spin-boson
model.

3.3.1 Kink representation

First, let us write the partition function of the spin-boson model in the kink repre-
sentation. The partition function is given in the imaginary time path integral form
as [17, 19]

Z = tr
[
e−βH

]
=
∫

Dσz(τ) e−S [σz(τ)], (3.44)

S [σz(τ)] = −1
4

∫ β

0
dτ
∫ τ

0
dτ′ σz(τ)K(τ − τ′)σz(τ

′), (3.45)

where σz(τ) is a spin path along the imaginary-time axis, Dσz(τ) is an integral mea-
sure for all possible paths σz(τ), S [σz(τ)] is an influence function, and K(τ) is a
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kernel defined as

K(τ) =
∫ ∞

0
dω I(ω)

cosh [ω(β/2 − τ)]

sinh(βω/2)
, (3.46)

where I(ω) is the spectral density. Note that the kernel has the symmetric property,
K(τ) = K(β − τ), and the asymptotic form K(τ) ∼ τ−(1+s) for ω−1

c ≪ τ ≪ β/2.
Here, we move from the spin representation (3.44) to the kink representation.

The spin path σz(τ) is characterized by an alternative configuration of kinks (jumps
from σz = −1 to σz = +1; qi = +1) and anti-kinks (opposite jumps; qi = −1) and
their positions τi∈[1,2n]. Thus, the derivative of the spin path can be rewritten in terms
of the kink variable qi as

dσz(τ)

dτ
=

2n

∑
i=1

2qiδ(τ − τi), (3.47)

where n is the number of the pairs of kinks and anti-kinks. By plugging this expres-
sion into Eq. (3.44), we obtain the partition function in the kink representation as
follows:

Z =
∞

∑
n=0

(
∆
2

)2n ∫ β

0
dτ2n

∫ τ2n

0
dτ2n−1 · · ·

∫ τ2

0
dτ1 exp

[
2n

∑
i,j

qiqjW(τi − τj)

]
, (3.48)

where W(τ) is obtained from W ′′(τ) = −K(τ) and reads

W(τ) =
∫ ∞

0
dω

I(ω)

ω2
cosh (βω/2)− cosh [ω (β/2 − τ)]

sinh (βω/2)
. (3.49)

3.3.2 Calculation algorithm

We apply the CTQMC method [125] to the partition function of the spin-boson
model in the kink representation. The CTQMC algorithm in this thesis employs a
cluster-flip update similar to the Swendsen–Wang cluster algorithm [126]. This al-
gorithm allows us to overcome the critical slowing down, namely, the problem that
the correlation time diverges near the critical point of second-order phase transition.
The cluster-flip update is constructed as follows [19] (see Fig. 3.7):

1. Insert new vertices with Poisson statics, P(∆τ) = Γe−Γ∆τ with mean value
Γ−1 = 2/∆.

2. Connect two segments (the line segments between neighboring vertices), si
and sj, with the probability

p[si, sj] = 1 − δσz(si),σz(sj)

[
1 − e−2A

]
, (3.50)

A = W(τi−1 − τj−1)− W(τi−1 − τj)− W(τi − τj−1) + W(τi − τj), (3.51)

where σz(si) is the value of σz in the segment si, and positions of the vertices at
the two edges of the segment si are denoted by τi−1 and τi, respectively.

3. Flip each segment cluster with probability 1/2.

4. Remove the redundant vertices within segments.
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0

FIGURE 3.7: The configurations along the imaginary-time axis and
the CTQMC update process: (a) An initial configuration in the spin
representation, (b-i) the kink representation of panel (a), (b-ii) inser-
tion of new cuts using the Poisson distribution, (b-iii) connection of
segments with the probability (3.50), (b-iv) flipping each cluster with
probability 1/2, (b-v) removal of redundant cuts, and (c) the final con-
figuration in the spin representation after the update.

The Monte Carlo data presented in this thesis represent averages over 105-106 cluster
updates.

By using the CTQMC method, we can evaluate the Fourier transformation of the
spin correlation function C(τ) = ⟨σz(τ)σz(0)⟩sub defined on the imaginary-time axis
as follows:

C(iωn) =
∫ h̄β

0
dτ eiωnτC(τ) =

1
h̄βω2

n
⟨|ξ(iωn)|2⟩ , (3.52)

where ⟨·⟩ denotes the CTQMC sampling average, ωn = 2πn/(h̄β) is the Matsubara
frequency, and β = 1/(kBT) is the inverse temperature. Here, ξ(iωn) is the Fourier
transformation of the derivative of the spin path, ξ(τ) = dσz(τ)/dτ, and can be
expressed in the kink representation, using Eq. (3.47), as

ξ(iωn) =
2n

∑
j=1

2(−1)jeiωnτj . (3.53)

Then, we evaluate the reflection coefficient numerically in the following way:

1. Get a set of vertex position {τj} at each configuration.
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2. Calculate the Fourier transformation of the spin correlation function, C(iωn),
using Eqs. (3.52) and (3.53).

3. Perform the analytical continuation numerically using the Padé approxima-
tion [127] and then obtain the Fourier transformation of the dynamic spin sus-
ceptibility,

χsub(ω) = C(iωn → ω + iδ). (3.54)

4. Evaluate the reflection coefficient using Eq. (3.43).

Moreover, we can calculate the static spin susceptibility using the CTQMC method
as follows:

χ0 = β ⟨σ̄2
z ⟩ , (3.55)

σ̄z =
1

h̄β

∫ h̄β

0
dτ σz(τ) =

2
h̄β

2n−1

∑
j=0

(−1)jτj + 1. (3.56)

3.3.3 Binder analysis

Finally, we explain how to determine the critical point of the quantum phase transi-
tion for the sub-Ohmic spin-boson model [19]. To study this quantum phase transi-
tion, we use the finite size (or temperature) scaling for observable A in the vicinity
of the critical point,

⟨A⟩ (β, α) = βxA fA(βy∗t δ), (3.57)

where δ = (α − αc)/αc denotes the dimensionless distance from the critical point,
xA and fA are the scaling exponent and scaling function of the observable A, re-
spectively. For the sub-Ohmic spin-boson model, the exponent y∗t is related to the
correlation length exponent ν (ξ ∼ δ−ν at the critical point δ ≃ 0) as [19, 120, 119]

y∗t =


1
ν

, (0 < s ≤ 0.5),

1
ν
+

1
2
− s, (s > 0.5).

(3.58)

Now, we introduce the Binder parameter defined as

B =
1
2

(
3 − ⟨σ̄4

z ⟩
⟨σ̄2

z ⟩
2

)
, (3.59)

where σ̄z = (h̄β)−1
∫

dτ σz(τ) is the magnetization for a spin configuration. The
Binder parameter takes values of 1 in the localized phase and 0 in the delocalized
phase and jumps between them when the coupling strength passes across the crit-
ical point. The scaling exponent of the Binder parameter is xB = 0 because it only
includes the ratio of the same order of parameters. Therefore, the critical point δ = 0,
i.e., α = αc, is determined as a point at which the Binder parameter is independent
of the temperature at sufficiently low temperatures.
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FIGURE 3.8: Frequency dependence of the dynamic spin susceptibil-
ity for s = 0.5 and ∆/ωc = 0.1. (a) and (b) describe the plot of numer-
ical results for the real and imaginary parts of the dynamic spin sus-
ceptibility, respectively, calculated by the CTQMC simulations. The
three types of plots indicate the results at α = αc = 0.1074 for differ-
ent temperatures, βh̄ωc = 212 (blue), 213 (green), and 214 (red), and
the other plot at α = 0.05 (< αc) and βh̄ωc = 214 (purple). The black
solid line in panel (b) is given by the generalized Shiba-Korringa re-
lation (3.63).

3.4 Numerical results

In this section, we present the numerical results for the dynamic spin susceptibility
and the microwave reflection at the critical point, α = αc, and below it, α < αc, by
performing the CTQMC simulations, as explained in Section 3.3.

3.4.1 Dynamic spin susceptibility

Quantum critical regime

First, we discuss the dynamic spin susceptibility in the quantum critical regime, α =
αc. In this regime, the dynamic spin susceptibility exhibits the power-law frequency
dependence reflecting the nature of the quantum phase transition,

χsub(ω) ∼ ω−y. (3.60)
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FIGURE 3.9: (a) The real and (b) imaginary parts of the dynamic spin
susceptibility for s = 0.3 as a function of frequency, which are ob-
tained by the CTQMC calculation. For s = 0.3, the critical coupling
strength is αc = 0.034. Other parameters and plot colors are the same
as those in Fig. 3.8.

Here, y is a critical exponent of the dynamic spin susceptibility and related to that
of the imaginary-time spin-spin correlation function as y = 2 − η. Thus, for 0 < s ≤
0.5, the critical exponent y can be obtained by using the mean-field result (3.8),

y = s. (3.61)

Note that, as discussed in Section 2.5, the critical exponent is a complex function of
s for 0.5 < s < 1 because that case belongs to the non-trivial universality class.

To compare the analytical form (3.61) and numerical results, we first consider
the case of s = 0.5 and ∆/ωc = 0.1, for which the critical points are determined as
αc = 0.1074 by the Binder analysis, as discussed in Section 3.3. Figures 3.8 (a) and
(b) show the frequency dependence of the real and imaginary parts of the dynamic
spin susceptibility obtained by the CTQMC simulations at α = αc for three different
temperatures, βh̄ωc = 212, 213, and 214. As shown in Fig. 3.8, the dynamic spin
susceptibility is proportional to ω−0.5 for a frequency range, kBT/h̄ ≪ ω ≪ ∆̃,
where ∆̃ ≲ ∆ is the renormalized tunneling frequency dependent of s, ∆/ωc, and α.
This exponent for the low-frequency region is consistent with the critical exponent
in Eq. (3.61) for s = 0.5. As shown in Fig. 3.9, we can observe the critical power-
law behavior (3.61) even for s = 0.3, for which the critical point is determined as
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αc = 0.034, although the frequency range showing the critical behavior is narrower
than the case of s = 0.5. Note that our results are in agreement with those of previous
studies [115, 128].

Delocalized regime

We next consider the delocalized regime, α < αc, in which the ground state is de-
scribed by a coherent superposition of the two charge states. At low temperatures,
we can apply the generalized Shiba-Korringa relation [129, 38]

lim
ω→0

h̄Im[χsub(ω)]

ωs = 2παω1−s
c

(
h̄χ0

2

)2

. (3.62)

This relation provides the low-frequency asymptotic behavior of the dynamic spin
susceptibility,

Im[χsub(ω)] ∼ h̄παχ2
0ω1−s

c

2
ωs. (3.63)

This relation is extended from the Shiba-Korringa relation in the Kondo model [130],
which can be described by the local Fermi liquid theory [67]. Thus, what this relation
holds means the appearance of the many-body effect.

Fig. 3.8 shows the real and imaginary parts of the dynamic spin susceptibility for
s = 0.5, ∆/ωc = 0.1, and βh̄ωc = 214 at α = 0.05, which is sufficiently smaller than
the critical point αc = 0.1074. The imaginary part of the dynamic spin susceptibil-
ity has a peak at a slightly higher frequency than ∆̃ for the quantum critical regime
while the real one has a shoulder. This indicates that the renormalization effect in ∆̃
due to the sub-Ohmic bath is stronger as the coupling strength increases. At suffi-
ciently small frequencies, ω ≪ ∆̃, the numerical results for the imaginary part of the
dynamic spin susceptibility exhibits the power-law frequency dependence, and its
exponent is consistent with the generalized Shiba-Korringa relation (3.63), resulting
in Im[χsub(ω)] ∝ ω0.5 for s = 0.5. Note that the static spin susceptibility in the pref-
actor of Eq. (3.63) is determined numerically by using the CTQMC, as discussed in
Section 3.3. One can observe this power-law behavior in the delocalized phase even
for s = 0.3 in Fig. 3.9.

3.4.2 Reflection

Finally, we discuss the microwave reflection loss, 1 − |r(ω)|2. From Eq. (3.43), the
reflection loss can be written as

1 − |r(ω)|2 = πh̄IR(ω)Im [χsub(ω)] +O(α2
R). (3.64)

Recalling that the bath R (the transmission line) is Ohmic, IR(ω) ∝ ω, and the cou-
pling between the two-level system and the Ohmic bath is sufficiently weak, αR ≪ 1,
the reflection loss is almost proportional to ωIm[χsub(ω)]. Furthermore, by using
Eqs. (3.61), (3.60), and (3.63), we obtain the the power-law behavior of the reflection
loss as follows:

1 − |r(ω)|2 ∼
{

ω1−s, for α = αc, kBT/h̄ ≪ ω ≪ ∆̃,

ω1+s, for α < αc, ω ≪ ∆̃.
(3.65)
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FIGURE 3.10: Frequency dependence of the reflection loss, 1− |r(ω)|,
calculated using the CTQMC simulations. The plots represent the
numerical results for (a) s = 0.5 and (b) s = 0.3. The insets in each
panel represent the reflection as a function of frequency. The other
parameters are set as ∆/ωc = 0.1 and βh̄ωc = 214. The red and
purple plots indicate the results at the critical point (α = 0.1074 for
s = 0.5 and α = 0.034 for s = 0.3) and below it (α = 0.05 for s = 0.5
and α = 0.01 for s = 0.3), respectively.

Figure 3.10 (a) and (b) show the frequency dependence of the reflection loss for
s = 0.5 and 0.3, respectively. The other parameters are set as ∆/ωc = 0.1, βh̄ωc =
214, and αR = 0.01. The insets in Fig. 3.10 represent the reflection as a function
of frequency. It has a small peak for both the quantum critical regime, α = αc,
and the delocalized regime, α < αc, near the renormalized tunneling amplitude ∆̃.
This indicates that the incident microwave is almost reflected but some part of the
microwave with characteristic frequency ∆̃ of the sub-Ohmic spin-boson model is
absorbed in the two-level system. For the low frequency, ω ≪ ∆̃, the reflection loss
shows the power-law frequency dependence and approaches zero more slowly for
the case of the quantum critical regime than the delocalized phase. Their exponents
are consistent with the analytical forms (3.65) both for s = 0.3 and 0.5. They are
signatures of the quantum phase transition and the quantum many-body effect.

At the end of this section, we add an interesting remark. The characteristic fre-
quency behavior of the reflection loss coming from the quantum phase transition
or the quantum many-body effect is dependent on s. Combining this fact and the
proposition of the realization of the sub-Ohmic bath with arbitrary s using super-
conducting circuits in Section 3.2 leads to a possibility that one can control quantum
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critical phenomena and quantum many-body phenomena in well-controllable sys-
tems.

3.5 Short summary of this chapter

We studied quantum critical phenomena of the sub-Ohmic spin-boson model through
the microwave scattering based on the superconducting circuit. By considering a
superconducting circuit composed of a charge qubit and an RLC transmission line
with space-dependent elements, we show that it is effectively described by the sub-
Ohmic spin-boson model. Moreover, we clarified the dynamic spin susceptibility
and the microwave reflection loss at and far from the quantum phase transition by
performing the continuous-time Monte Carlo method. As a result, the Fermi liquid-
like feature (the Shiba-Korringa relation) and quantum critical behavior appear in
their frequency dependence, depending on the exponent of the spectral density s.
This indicates a possibility that quantum criticality can be studied in microwave
spectroscopy for superconducting circuits in a realistic setup. In this chapter, we
considered only the case of s ≤ 0.5, which allows us to compare it with the ana-
lytical results by the mean-field universality class. It would be an important future
problem to check the critical exponents from the numerical approach for a wider
range of s.
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Chapter 4

Transmission through a Disordered
Josephson-junction Chain

In this chapter, we investigate the scattering of elastic waves through a disordered
Josephson-junction chain. First, we briefly introduce the model of the disordered
Josephson-junction chain in Section 4.1. Next, we move to new results obtained in
Ref. [40]. We formulate the elastic scattering off the disordered Josephson-junction
chain in the classical limit in Section 4.2. Using both numerical and analytical ap-
proaches, we show the results for the transmission in the weakly localized regime
in Section 4.3. Finally, we present several pieces of information about the strongly
localized regime and compare them with the localization model with the Gaussian
white-noise disorder in Section 4.4.

4.1 Disordered Josephson-junction chain

As described in Sections 2.6 and 2.7, the disordered Josephson-junction chain of the
length d can be described by the random phase sine-Gordon model (2.48) (for the
corresponding circuit, see Fig. 4.1). We repeat the theoretical description of the dis-
ordered Josephson-junction chain. The Lagrangian is given as

L =
∫ d

0
dx
{

h̄
2πKv

[
θ̇(x, t)

]2 − h̄v
2πK

[∂xθ(x, t)]2 +
Λ
a

cos [2θ(x, t) + χ(x)]
}

, (4.1)

where θ(x, t) is the local field associated with the accumulated charge and v =
a
√

2EJEg/h̄ is the plasmon velocity with the elementary unit length a and Eg =

(2e)2/(2Cg). The Luttinger parameter K = π
√

EJ/(2Eg) is related to the chain
impedance as Z = RQ/(2K). The random phase field satisfies the following statis-
tics; the average,

⟨cos χ(x)⟩ = ⟨sin χ(x)⟩ = 0, (4.2)

and variance,

σ2 =
∫ d

0
dx ⟨cos χ(x) cos χ(0)⟩ =

∫ d

0
dx ⟨sin χ(x) sin χ(0)⟩ . (4.3)

At the transmon limit (EJ ≫ EC), the quantum phase slips are rare events, and its
amplitude is written as

Λ =
8√
π

(
2E3

J EC
)1/4

e−
√

32EJ/EC (4.4)
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FIGURE 4.1: A disordered Josephson-junction chain of length d. The
Josephson energy and the Josephson capacitance of each junction are
EJ and C, respectively. The ground capacitance of each superconduct-
ing island (blue circle) is Cg. The random background charges are in-
duced by the gate voltages Vg. An incident plasmon wave from one of
the waveguides contacted to the Josephson-junction chain is either re-
flected to the same waveguide or transmitted to the opposite waveg-
uide with the amplitudes r(ω) and t(ω), respectively, at frequency
ω. The plasmon velocities in the waveguides and the Josephson-
junction chain are v0 and v. The impedances of the waveguides and
the Josephson-junction chain are RQ/2K0 and RQ/2K, respectively.

withEC = (2e)2/(2C).
In this thesis, we focus on the classical limit (K → 0). In this limit, as described

in Section 2.7, the kinetic term in the Lagrangian (4.1) can be neglected. Then, our
problem is reduced to the interplay between the elasticity and the disorder. On the
length scale shorter than the Larkin length R⋆ defined in Eq. (2.52), the elastic proper-
ties still remain, which corresponds to excitations with higher frequencies (ω ≳ ω⋆).
However, at low frequencies (ω ≪ ω⋆), the collective pinning effect induced by the
disorder breaks the sound-like plasmon spectrum.

4.2 Formalism for scattering problem in the classical limit

In this section, we formulate the scattering problem for the disordered Josephson-
junction chain in the classical limit (K ≪ 1), i.e., in the deep Bose-glass phase. To
this end, we consider a setup where the Josephson-junction chain is coupled to two
waveguides (see Fig. 4.1). Classically, an incident plasmon wave from one of the
waveguides (the left one in Fig. 4.1) is either reflected to the same waveguide or
transmitted to the opposite waveguide, with the respective amplitudes r(ω) and
t(ω). The two waveguides are the same and have the plasmon velocity v0 and the
Luttinger parameter K0.

Using the continuity of θ(x) and (v/K)∂xθ(x) at interfaces between the waveg-
uides and the Josephson-junction chain, we find that the plasmon wave reflection
and transmission at the interfaces due to the impedance mismatch (Z ∝ 1/K) is
given by

R0 =

(
K − K0

K + K0

)2

, T0 =
4KK0

(K + K0)
. (4.5)
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4.2.1 Equation of motion

In the classical limit, the field θ(x, t) can be divided into a static part θ̄(x) and a small
oscillation around it with frequency ω,

θ(x, t) = θ̄(x) + ψ(x)e−iωt. (4.6)

The static field θ̄(x) minimizes the classical energy functional

E [θ] =
∫ d

0
dx
[

h̄v
2πK

(∂xθ)2 − Λ cos(2θ + χ)

]
, (4.7)

with boundary conditions ∂x θ̄(0) = ∂x θ̄(d) = 0 coming from the continuity of volt-
ages at the both edges of the Josephson-junction chain at x = 0 and d:

v
K

∂xθ(0+, t) =
v0

K0
∂xθ(0−, t),

v
K

∂xθ(d−, t) =
v0

K0
∂xθ(d+, t), (4.8)

respectively. The small oscillation ψ(x) takes the asymptotic form of a scattering
state at frequency ω in the waveguides,

ψ(x) =

{
eiωx/v0 + r(ω)e−iωx/v0 , (x < 0),

t(ω)eiω(x−d)/v0 , (x > d),
(4.9)

where r(ω) and t(ω) are the elastic reflection and transmission amplitudes, respec-
tively. By linearizing the equation of motion, the small oscillation ψ(x) solves the
Schrödinger-like wave equation

ω2ψ(x) = −v2∂2
xψ(x) + V(x)ψ(x), (4.10)

with boundary conditions

ψ(0) = 1 + r(ω), (4.11)
ψ(d) = t(ω), (4.12)

v∂xψ(0) = iω
K
K0

[1 − r(ω)], (4.13)

v∂xψ(d) = iω
K
K0

t(ω), (4.14)

which come from the continuity of current

∂tθ(0+, t) = ∂tθ(0−, t), ∂tθ(d−, t) = ∂tθ(d+, t), (4.15)

and voltage (4.8). Here, the effective disorder potential V(x) takes

V(x) =


4πKvΛ

h̄
cos

[
2θ̄(x) + χ(x)

]
, (0 < x < d),

0, (otherwise),
(4.16)

and its properties will be discussed later. Note that, in the waveguides, since the
effective disorder potential is vanishing, the linearized equation of motion (4.10)
becomes the usual wave equation, which is consistent with the asymptotic form of
the small oscillations (4.9).
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4.2.2 Numerical method

Here, we describe our strategy to calculate the scattering amplitudes numerically.
First, we rewrite our problem with the dimensionless variables by rescaling the spa-
tial dimension by the Larkin length R⋆ and the frequency dimension by the Larkin
frequency ω⋆. Next, the dimensionless spatial variables are discretized with a small
spacing ϵ as d/R⋆ = (M + 1)ϵ, where M is the division number. Then, the above
prescription leads the classical energy functional (4.7), in units of (ϵh̄v)/(2πKR⋆), to
take the discretized form:

Ẽ [θ] =
M−1

∑
m=0

[(
θm+1 − θm

ϵ

)2

− Vm

2

]
− V0 + VM

4
. (4.17)

Here,

Vm = 2
[
V ′

m cos 2θm + V ′′
m sin 2θm

]
(4.18)

is the discretized effective disorder potential in dimensionless units, and the correla-
tors (2.50) are reproduced in continuum limit (ϵ → 0) if ⟨V ′

m⟩ = ⟨V ′′
m⟩ = ⟨V ′

mV ′′
n ⟩ = 0

and ⟨V ′
mV ′

n⟩ = ⟨V ′′
mV ′′

n ⟩ = ϵ−1δm,n. The last term in Eq. (4.17) is derived from consid-
ering an infinite periodic chain with the mirror symmetry Vm = V2M−m in unit chain
(0 ≤ m ≤ 2M − 1). This ensures that the boundary conditions ∂x θ̄(0) = ∂x θ̄(d) = 0
are satisfied in continuum limit.

We compare two ways to generate the random fields V ′
m and V ′′

m. In the phase
model reminiscent of the original model, we relate them with flatly distributed ran-
dom phases χm ∈ [0, 2π) at each site,

V ′
m =

√
2
ϵ

cos χm, V ′′
m =

√
2
ϵ

sin χm. (4.19)

Alternatively, in the box model, the random fields V ′
m and V ′′

m are independent and
flatly distributed in the interval (−

√
3/ϵ,

√
3/ϵ). Our numerical results could not

distinguish between the two models (see Figs. 4.2).
The static fields {θ̄m} are determined by minimizing the classical energy func-

tional (4.17). To perform the minimization, we adopted the minimization method
described in Ref. [102]. Note that a common π-shift of the static field, θm → θm +
π, leaves the classical energy functional (4.17) invariant and the effective poten-
tial (4.18) only depends on θ̄m mod π. Thus, we can restrict for solutions θ̄m ∈
(−π/2, π/2] by substituting (θm − θm+1)

2 with mink(θm − θm+1 − kπ)2 in Eq. (4.17).
Now, we calculate the scattering amplitudes using the static fields θ̄ obtained by

the above method. The linearized equation of motion (4.10) and boundary condi-
tions (4.11)-(4.14) are discretized as(

ω

ω⋆

)2

ψm +
ψm+1 + ψm−1 − 2ψm

ϵ2 − Vmψm = 0, (4.20)
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for 0 < m ≤ M, and

ψ0 = 1 + r(ω), (4.21)
ψM = t(ω), (4.22)

ψ1 − ψ0

ϵ
= i

ω

ω⋆

K
K0

[1 − r(ω)], (4.23)

ψM − ψM−1

ϵ
= i

ω

ω⋆

K
K0

t(ω), (4.24)

respectively. Using these boundary conditions, we can eliminate ψ0 and ψM and
express r(ω) and t(ω) in terms of ψ1 and ψM−1 as

r(ω) =

(
1 − iϵ

K
K0

ω

ω⋆

)−1 (
ψ1 − 1 − iϵ

K
K0

ω

ω⋆

)
, (4.25)

t(ω) =

(
1 − iϵ

K
K0

ω

ω⋆

)−1

ψM−1. (4.26)

Moreover, the equation of motion (4.20) reads eigenvalue equation with the vec-
tor {ψ1, . . . , ψM−1}. Thus, for a given disorder configuration yielding the potentials
Vm, by solving the eigenvalue problem, we obtain the scattering amplitudes from
Eqs. (4.25) and (4.26). The averaged scattering amplitudes are evaluated numerically
by iterating this procedure for a large number of disorder configurations, typically
104 disorder configurations in this thesis.

4.2.3 Effective disorder potential

The effective potential (4.16) depends on the solution θ̄(x) of a nontrivial optimiza-
tion problem defined by the functional (4.7), as discussed in the previous subsection.
Thus, it is expected to have a complex pattern of non-Gaussian correlations of which,
to the best of our knowledge, little is known. From the reality condition ω2 > 0 for
the eigen spectrum of Eq. (4.10), the local potential mean has a well defined positive
sign, ⟨V(x)⟩ > 0. Figure 4.2 (a) shows the mean of the disorder potential as a func-
tion of space for d/R⋆ = 20. The mean reaches a constant value sufficiently far from
the edges, on the scale of R⋆. We also found numerically a fitting function v(x) that
describes the exponential enhancement of ⟨V(x)⟩ near the edges, see the legend of
Fig. 4.2 (a).

The potential V(x) inherits a finite correlation length R⋆ from θ̄, despite the un-
derlying disorder χ(x) being a short-ranged one. We characterize the spatial corre-
lations in V(x) by considering its second cumulant and expressing it in the form

⟨⟨V(x)V(y)⟩⟩ ≡ ⟨(V(x)− ⟨V⟩) (V(y)− ⟨V⟩)⟩

= ω4
⋆

[
4δ

(
x − y

R⋆

)
− w

(
x − y

R⋆

)]
. (4.27)

Here, the introduced function w(x) is smooth and decays at large scales. We find
w(x) numerically as w(x) = ce−|x|/a with c ≈ 3.24 and a ≈ 0.346 (see Fig. 4.2 (b)).
We note that the random potential V(x) is non-Gaussian. Its third-order cumulant
is shown in the inset of Fig. 4.2 (b). The Fourier component of ⟨⟨V(x)V(0)⟩⟩ at small
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FIGURE 4.2: (a) The mean effective disorder potential and (b) the
smooth part of the second-order correlation function at d/R⋆ = 20.
The green and red lines are the numerically obtained curves for the
random phase and box models, respectively; they cannot be distin-
guished from each other. The dashed line represents the fitting func-
tions v(x) = d[e−x/b + e−(d−x)/b] + v0 with d ≈ 1.36, b ≈ 0.269, and
v0 ≈ 2.44 in panel (a) and −w(x) = −ce−|x|/a with c ≈ 3.24 and
a ≈ 0.346 in panel (b). The inset of panel (b) shows the third-order
cumulant at noncoinciding points.

momentum on the scale of 1/R⋆ is reduced by a factor 1 − η with

η =
1
4

∫ d/R⋆

0
dx w(x) ≈ 0.561, (4.28)

compared to its large-momentum value, which is determined by the delta-function
in Eq. (4.27). The property of η ̸= 0 is the consequence of the collective pinning
mechanism. In the large-frequency range of interest in Section 4.3, η is the only pa-
rameter needed to quantitatively predict the statistics of the scattering amplitudes.
On the other hand, we illustrate in Section 4.4 that the signature properties of the
reflection and transmission amplitudes at low frequencies cannot be accounted for
by a white Gaussian disorder. Therefore, we attribute these properties to the non-
Gaussianity of the potential V(x) induced by the pinning effect.
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4.3 Weakly localized regime

In this section, we derive an analytical formula for the transmission ⟨T(ω)⟩ ≡ ⟨|t(ω)|2⟩
in the high-frequency regime (ω > ω⋆), where disorder can be treated perturba-
tively.

4.3.1 Mapping to the Dirac equation

First, we show that, at high frequency (ω > ω⋆), the equation of motion (4.10) is
equivalent to a Dirac equation in Gaussian random fields. Let us introduce two
functions, R(x) and L(x), such that

ψ(x) = R(x) + L(x), (4.29)

∂xψ(x) = i
ω

v
[R(x)− L(x)] . (4.30)

Using ∂xψ(x) = ∂xR(x) + ∂xL(x) and the equation of motion (4.10), the new func-
tions are followed by

ωR(x) = −iv∂xR(x) +
V(x)
2ω

[R(x) + L(x)] , (4.31)

ωL(x) = +iv∂xL(x) +
V(x)
2ω

[R(x) + L(x)] . (4.32)

The functions R(x) and L(x) have the meaning of the right- and left-moving compo-
nents of the wave function, respectively. The terms ∝ V(x) in Eqs. (4.31) and (4.32)
result in scattering between the components R(x) and L(x). In the weak-disorder
regime, only the forward- and back-scattering amplitudes evaluated within the Born
approximation determine the scattering properties of the Josephson-junction chain.
At ω ≫ ω⋆, since the forward- and backward-scattering amplitudes are associated
with the harmonics of the effective disorder potential near momenta k = 0 and
k = 2ω/v ≫ 1/R⋆, respectively, it allows us to expand the effective disorder po-
tential as

V(x)
2ω

≈ ∆0(x) + ∆(x)e2iωx/v + ∆∗(x)e−2iωx/v, (4.33)

where the real function ∆0(x) and the complex function ∆(x) are slowly varying ran-
dom functions in the scale of v/ω. We find that the slow components of Eqs. (4.31)
and (4.32) yield a Dirac equation,

[−iv∂xτ3 + ∆0(x) + ∆1(x)τ1 + ∆2(x)τ2]Φ(x) = 0, (4.34)

where Φ(x) = (R(x)e−iω(x−d)/v, L(x)eiω(x−d)/v)t, ∆(x) = ∆1(x) + i∆2(x), and Pauli
matrices τ1,2,3. Using Eq. (4.27), the Born approximation applied to scattering off a
potential given by Eq. (4.33) provides the forward- and back-scattering lengths,

ℓ0(ω) =
ℓπ(ω)

1 − η
, ℓπ(ω) = R⋆

(
ω

ω⋆

)2

, (4.35)

respectively. Thus, the correlation between the random offset charge (short-range
correlation) and the static charge density ∝ ∂x θ̄ (long-range correlation) induced
by the scattering off the potential tends to weaken the forward-scattering rate and
introduces a quantitative difference between ℓ0(ω) and ℓπ(ω) by a factor 1/(1 − η).
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As ℓ0(ω), ℓπ(ω) ≫ R⋆ in the high-frequency regime, the random fields ∆0(x) and
∆(x) in Eq. (4.34) are viewed as Gaussian ones each of which has a length scale ∼ R⋆.
The Fourier components of the correlation function of V(x) are reproduced by the
Fourier components of correlation functions of the random fields:

⟨∆0(x)∆0(y)⟩ = (1 − η)
ω4
⋆

ω2 δ

(
x − y

R⋆

)
, (4.36)

⟨∆(x)∆∗(y)⟩ = ω4
⋆

ω2 δ

(
x − y

R⋆

)
. (4.37)

Both fields ∆0(x) and ∆(x) induce a random phase between right- and left-
movers. The contribution from ∆0(x) to the phase acquired over a distance x is
estimated as (2/v)

∫ x
0 dy ∆0(y), and its variance grows as 4x/ℓ0(ω). As we will see

below, the additional contribution from ∆(x) is 2x/ℓπ(ω), and it only quantitatively
modifies the result about the random phase. Phase scrambling occurs in a longer
Josephson-junction chain with d ≫ ℓ0(ω), ℓπ(ω). Using Eq. (4.35), this condition
is equivalent to a small frequency condition, ω ≪ ωcr with crossover frequency
ωcr = ω⋆

√
d/R⋆. Thus, we can see loss of coherent phases for ω⋆ ≪ ω ≪ ωcr. Ref-

erence [98] addressed the role of ωcr in the visibility of oscillations in the reflection
amplitude. In this thesis, we find a similar effect in the frequency dependence of the
transmission.

In addition, the backward-scattering represented by ∆(x) is responsible for the
plasmons localization. The localization physics will be discussed in Section 4.4.

4.3.2 Fokker-Planck formalism

To proceed further, we use the Fokker-Planck formalism that was developed to
predict the statistics of scattering properties of waves subject to Gaussian white-
noise disorder. The previously known results [131, 132, 133, 134, 135] assume a per-
fect impedance matching. In this thesis, we generalize them to the case of a finite
impedance mismatch.

The wave functions in the waveguides and the Josephson-junction chain are re-
lated through(

R(0)
r(ω)

)
= S0

(
1

L(0)

)
,
(

t(ω)
L(d)

)
= ST

0

(
R(d)

0

)
. (4.38)

Here, a phase factor e−iωd/v was absorbed in the transmission coefficient t(ω) and
the scattering matrix at each edge is

S0 =

(
t0 r0
−r0 t0

)
(4.39)

with r0 =
√

R0 and t0 =
√

T0 (see Eq. (4.5)). This allows us to relate the scattering
amplitudes with the Ricatti variable,

z(x) =
L(x)
R(x)

e2iω(x−d)/v, (4.40)
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at the edges of the chain (x = 0, d) as follows:

r(ω) =
−r0 + z(0)e2iωd/v

1 − r0z(0)e2iωd/v , r0 = z(d). (4.41)

From the Dirac equation (4.34), the Ricatti variable is a solution of a first-order non-
linear stochastic differential equation,

−iv∂xz(x) = 2∆0(x)z(x) + ∆∗(x) + ∆(x)z2(x). (4.42)

Thus, the reflection coefficient r(ω) and the transmission T(ω) = 1 − |r(ω)|2 are
expressed in terms of a solution of Eq. (4.42) with a given boundary condition (4.41).

Since the Ricatti equation (4.42) can be seen as a Wiener process, by taking ad-
vantage of the Gaussian correlators (4.36) and (4.37), we derive the Fokker-Planck
equation for the conditional distribution probability P(x, θ1, θ2), where θ1 and θ2 are
the amplitude and the phase of the Ricatti variable such that z = eiθ1 e−θ2 , (see Ap-
pendix D for the derivation)

−∂P
∂x

=
2

ℓ(ω)

∂2P
∂θ2

1
+

1
ℓπ(ω)

∂2

∂θ2
2

(
sinh2 θ2P

)
, (4.43)

for 0 < x < d, with the mean-free path

ℓ(ω) =

(
1

ℓ0(ω)
+

1
2ℓπ(ω)

)−1

=
2

3 − 2η
ℓπ(ω) (4.44)

Moreover, the solution of Eq. (4.43) is separable, P(x, θ1, θ2) = P1(x, θ1)P2(x, θ2), and
each factor satisfies

−∂P1

∂x
=

2
ℓ(ω)

∂2P1

∂θ2
1

, (4.45)

−∂P2

∂x
=

1
ℓπ(ω)

∂2

∂θ2
2

(
sinh2 θ2P2

)
, (4.46)

with initial conditions P1(d, θ1) = δ(θ1) and P2(d, θ2) = δ(θ2 − θ0) with θ0 = − ln r0.
Note that the statistics of θ2 (4.46) is only sensitive to backward-scattering, i.e., the
amplitude of the Ricatti variable is reflected from the localization properties. By
contrast, the statistics of θ1 (4.45), which describes the random phase between right-
and left-movers, depends both on forward- and backward-scattering.

Since Eq. (4.45) is a standard diffusion equation, its solution at x = 0 is easily
obtained by

P1(θ1) ≡ P1(x = 0, θ1) =
1√

8πd/ℓ
exp

(
− θ2

1
8d/ℓ

)
. (4.47)

Then, the variance of the θ1, ⟨θ2
1⟩ = 4d/ℓ0 + 2d/ℓπ, includes the contributions from

∆0 and ∆, which has the same order of magnitude, as discussed at the end of the
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FIGURE 4.3: Parameter space of transmission due to impedance mis-
match T0 and frequency ω. The transmission ⟨T⟩ (4.49) can be ex-
pressed in simple forms for three parameter regions; (1) T0 = 1, (2)
d ≫ ℓ(ω), and (3) d ≪ ℓ(ω) and T0 ≪ 1.

previous subsection. The solution of Eq. (4.46) can also be obtained as

P2(θ2) ≡ P2(x = 0, θ2)

=
e−d/4ℓπ

4 sinh2 θ2

∫ ∞

0
dk k tanh

(
πk
2

)
P− 1

2+i k
2
(coth θ2)P− 1

2+i k
2
(coth θ0)e−k2d/4ℓπ ,

(4.48)

where Pν(x) is the Legendre function of the first kind (see Appendix E for the deriva-
tion). Finally, we obtain the ensemble-averaged transmission as

⟨T⟩ =
∫

dθ1

∫
dθ2 P1(θ1)P2(θ2)T(θ1, θ2), (4.49)

where

T(θ1, θ2) = T0
1 − e−2θ2

1 + r2
0e−2θ2 − 2r0 sin(2ωd/v + θ1)e−θ2

(4.50)

is obtained by plugging z(0) = eiθ1−θ2 into Eq. (4.41) and using T = 1 − |r|2.
In the rest of this subsection, using Eq. (4.50), we derive simple formulas for the

transmission in three cases (see Fig. ).

(i) perfect impedance matching (T0 = 1)

At T0 = 1, Eq. (4.50) simplifies T(θ1, θ2) = 1 − e−2θ2 , which indicates that the statis-
tics of θ2 fully determines the transmission coefficient. By using properties of the
Legendre function,

Pν(1) = 1, and
∫ ∞

1
dx

1
1 + x

P− 1
2+i k

2
(x) =

π

cosh(kπ/2)
, (4.51)

(see Eq. 7.131.1 in Ref. [136]), we obtain the simple form for the transmission:

⟨T(ω)⟩ =
∫ ∞

0
dk

πk
2

tanh(πk/2)
cosh(πk/2)

e−(1+k2)d/4ℓπ(ω). (4.52)
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FIGURE 4.4: f (T0) = (4T0/π2)K2(1− T0) (green line) and its asymp-
totic form (4.57) for T0 ≪ 1 (dashed line).

At d ≪ ℓπ(ω), ⟨T⟩ ≈ 1 as expected for a ballistic junction. On contrary, at d ≫
ℓπ(ω), the ensemble-averaged transmission is

⟨T(ω)⟩ ≈ π5/2

2

(
ℓπ(ω)

d

)3/2

e−d/4ℓπ(ω), (4.53)

which is agreement with Ref. [132]. Note that the frequency dependence of ⟨T(ω)⟩
is smooth (no oscillations) and fully captured by ℓπ(ω).

(ii) asymptote at d ≫ ℓ(ω) and arbitrary T0

The sine term regarding θ1 in Eq. (4.50) produces Fabry-Pérot oscillations of the
transmission with period πv/d when the impedance mismatch is finite K ̸= K0.
At d ≫ ℓ(ω), the dispersion of θ1 given by Eq. (4.47) washes out the oscillations on
average. Thus, in this regime, θ1 can be taken as uniformly distributed, and Eq. (4.49)
simplifies to

⟨T⟩ =
∫

dθ2 P2(θ2)T(θ2), T(θ2) =
T0(1 − e−2θ2)

1 − R0e−2θ2
. (4.54)

Note that, at T0 = 1, it reproduces Eq. (4.52). Let us calculate the transmission for
an arbitrary value of T0 using Eqs. (4.54) and (4.48). For d ≫ ℓπ(ω), the k-integral in
Eq. (4.48) is dominated by the region k ≪ 1, so that we can replace

P− 1
2+i k

2
(x) ≈ P− 1

2
(x) =

2
√

2
π
√

x + 1
K

(
x − 1
x + 1

)
, (4.55)

where K(m) is the complete elliptic integral. After performing the k-integral, we
obtain

⟨T(ω)⟩ = π5/2

2

(
ℓπ(ω)

d

)3/2

e−d/4ℓπ(ω) f (T0), (4.56)

with f (T0) = (4T0/π2)K2(1−T0) (see Fig. 4.4). In particular, at the perfect impedance
matching (T0 = 1), f (T0 = 1) = 1, which reproduces Eq. (4.53), while, at large
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impedance mismatches (T0 ≪ 1),

f (T0 ≪ 1) ≈ T0

π2 ln2
(

16
T0

)
. (4.57)

Note that, as in Eq. (4.53), the frequency dependence of the pre-exponential factor in
Eq. (4.56) comes only via ℓπ(ω), i.e., the transmission is smooth (no oscillations) as
a function of frequency in this regime.

(iii) asymptote at d ≪ ℓ(ω) and T0 ≪ 1

At finite impedance mismatch and d ≪ ℓ(ω), Fabry-Pérot oscillations exist. For
large mismatch (T0 ≪ 1), we can use the initial value for the θ2-distribution, P2(θ2) ≈
δ(θ2 − T0/2), and then obtain

⟨T(ω)⟩ = ∑
n

∫
dθ1

T2
0

T2
0 + [2(ω − ωn)d/v + θ1]

2 P1(θ1) (4.58)

with P1(θ1) of Eq. (4.47). Here, ωn = nπv/d are the frequencies at which the
transmission has local maxima. Equation (4.58) describes how, as the frequency
decreases, the oscillations’ Lorentzian lineshapes with half-width T0v/2d, which is
determined solely by the impedance mismatch, evolve into Gaussian ones with half-
width v

√
2 ln 2/dℓ(ω), which is determined by the randomness of the Josephson-

junction chain. The crossover frequency is given by ωcr/T0. Remarkably, in the
frequency range ωcr ≪ ω ≪ ωcr/T0 the width of the oscillations is sensitive to η
(see Eq. (4.44)), i.e., the collective pinning.

4.3.3 Numerical results

The brute-force numerical calculations for the transmission are compared with the
predictions from the Fokker-Planck formalism in Fig. 4.5. In that figure, Eq. (4.52) is
used at perfect impedance matching (K/K0 = 1), while we use

⟨T(ω)⟩ = 2πT0 ∑
n

P1

(
2(ω − ωn)d

v

) ∫
dθ2

2θ2

2θ2 + T0
P2(θ2), (4.59)

for ω⋆ ≪ ω ≪ ωcr/T0, at T0 ≪ 1 (see Figs. 4.5 (a) and (b), respectively). They are in
good agreement with each other for the high-frequency region.

The localization properties of a disordered Josephson-junction chain are frequently
characterized by its Lyapunov exponent, γ(ω) = −(2d)−1ln T(ω) for a long chain.
In contrast with the transmission, the Lyapunov exponent has the self-averaging
property [131]. Here, for a random variable X⃗ = (X1, X2, . . . , XN), the self-averaging
property means

〈
Xj
〉
= lim

N→∞

1
N

N

∑
i=1

Xi, (4.60)

for arbitrary j, where ⟨·⟩ denotes averaging over all disorder configurations. In
Fig. 4.6 (a), we show the frequency dependence of the averaged Lyapunov expo-
nent, ⟨γ(ω)⟩ for different chain lengths at the impedance matching (K/K0 = 1).
Its inverse defines the localization length, Lloc(ω) = 1/ ⟨γ(ω)⟩. We checked nu-
merically that a celebrated Thouless relation [137], Lloc(ω) = 2ℓπ(ω), works well
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FIGURE 4.5: Frequency dependence of ⟨T(ω)⟩ for (a) K/K0 = 1.0 and
(b) K/K0 = 0.01 and d/R⋆ = 20. The green lines are the numerical
results, the dashed line is Eq. (4.52) in panel (a) and Eq. (4.59) in panel
(b).

at large frequencies, ω ≫ ω⋆. The self-averaging nature of γ(ω) is associated
with the log-normal character of the distribution of the transmission. To discuss
its statistics, the frequency dependence of the ratio between mean and variance,
Σ(ω) = d ⟨⟨γ2(ω)⟩⟩ / ⟨γ(ω)⟩, is plotted in Fig. 4.6 (b). According to the Fokker-
Planck formalism [131], that ratio should be 1 at ω⋆ ≪ ω ≪ ωcr. Despite the ten-
dency as d increases, the agreement is not perfect. (We attribute it to insufficient
length.) There was a renewed interest in Σ(ω) [138, 139, 140, 141] to test the single-
parameter scaling hypothesis of the theory of localization [26].

The presence of the factor 1/4 in the argument of the exponent in Eq. (4.53) or
(4.56) reflects that the averaged transmission is dominated by rare, optimal disor-
der configurations – not simply captured by the log-normal distribution (tails), and
which produce a resonant transmission, T ∼ 1 [142, 143, 144]. In other words,
⟨T⟩ ≫ Ttyp where Ttyp = exp(⟨ln T⟩) is the typical transmission. To check this effect,
in Fig. 4.7, we plot the frequency dependence of their ratio ln ⟨T(ω)⟩ / ⟨ln T(ω)⟩ for
various lengths at K = K0. (We attribute to insufficient length the deviation of that
ratio from 1/4 at ω ≫ ω⋆.)

Now, we compare the effect of disorder has on the waves’ transmission with that
on their reflection. By using the reflection coefficient (4.41) and assuming the flat
distribution of θ1 mentioned above Eq. (4.54), we find that, for ω⋆ ≪ ω ≪ ωcr, the
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FIGURE 4.6: (a) The average of the Lyapunov exponent and (b) its
variance as a function of frequency for different lengths d/R⋆ =
20, 40, 80, and 160 at K/K0 = 1.0. Arrows indicate the crossover
frequency ωcr for each length. The inset is an enlarged view of the
(a) low and (b) intermediate frequency regions. The dotted lines in
panels (a) and (b) show the result of the Gaussian white-noise po-
tential at d → ∞ for comparisons. As d increases, the Lyapunov
exponent approaches a constant value. At ω ≫ ω⋆, ⟨γ(ω)⟩ in
the two models coincide, in agreement with the Thouless relation,
⟨γ(ω)⟩ = [2ℓπ(ω)]−1. At ω ≪ ω⋆, the average exponent and its vari-
ance saturate to different values in the two models.

real part of the reflection coefficient averages to a frequency-independent value,〈
r′(ω)

〉
= −r0. (4.61)

This indicates that the averaged reflection coefficient is insensitive to disorder, in
contrast to the averaged transmission, which is manifestly dependent on ℓπ(ω)
(see Eqs. (4.53) and (4.56)). At higher frequency, ωcr ≪ ω ≪ ωcr/T0, and large
impedance mismatch T0 ≪ 1, we use the same methods as the third case for the
derivation of the simple transmission asymptote at d ≪ ℓ(ω) and T0 ≪ 1 to find

〈
r′(ω)

〉
= −1 +

T0

2 ∑
n

P1

(
2ωnd

v

)
. (4.62)

This form expresses the inhomogeneous broadening of plasmon standing waves
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FIGURE 4.7: The frequency dependence of the ratio of ln ⟨T(ω)⟩
and ⟨ln T(ω)⟩ for different lengths d/R⋆ = 20, 40, 80, and 160 at
K/K0 = 1.0. The ratio takes a frequency-independent value at low
frequency, ω ≪ ω⋆. As the frequency increases, it decreases while
remaining above the value 1/4 (dashed line) predicted in the fre-
quency range ω⋆ ≪ ω ≪ ωcr, then it increases to the value 1
at larger frequencies. Arrows indicate the crossover frequency ωcr
for each length. A scaling analysis with the length gives the result
ln ⟨T(ω)⟩ / ⟨ln T(ω)⟩ ≈ 0.90 in the low-frequency limit ω/ω⋆ → 0
and d/R⋆ → ∞.

confined in the chain, in correspondence with Ref. [98]. Finally, the standard Fabry-
Pérot formula for the reflection is recovered at ω ≫ ωcr/T0 when the levels’ broad-
ening is dominated by the radiation to waveguides, rather than inhomogeneous
broadening.

4.4 Strongly localized regime

At low frequencies ω ≪ ω⋆, plasmons are localized over a typical length R⋆, in the
fluctuations of the effective disorder potential (4.16). Those fluctuations are non-
Gaussian, and we have not been able to make an analytical theory of the scattering
properties in that regime. However, we could gather several pieces of information
from our numerical calculations. We compare them with known analytical results
for the one-dimensional theory of localization in a Gaussian white-noise potential
for which the additional function w(x/R⋆) in Eq. (4.27) is replaced by zero. While
the scattering properties of the two models coincide in the weakly localized regime
(ω ≫ ω⋆), important deviations appear in the strongly localized regime (ω ≪ ω⋆).
Below, we show the numerical results for the Lyapunov exponent, the reflection
phase, and the transmission.

4.4.1 Lyapunov exponent

First, we discuss the average of the Lyapunov exponent and its variance. The Lya-
punov exponent remains a self-averaging quantity, which saturates to a frequency-
independent value, ⟨γ⟩ R⋆ ≈ 1.36 at low frequencies, as shown in Fig. 4.6 (a). That
value is larger than the one in the Gaussian white-noise model, ⟨γ⟩ R⋆ = 31/3 ×√

π/Γ(1/6) ≈ 0.46 [145].
In agreement with the central limit theorem, we checked that the variance of

the Lyapunov exponent scales inversely with d. The frequency dependence of the
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ratio between the variance and average Σ(ω) = d ⟨⟨γ2(ω)⟩⟩ / ⟨γ(ω)⟩ is plotted in
Fig. 4.6 (b). At low frequencies, numerical value marks Σ ≈ 0.218, which is sig-
nificantly smaller than the one in the Gaussian white-noise model at vanishing fre-
quency, Σ ≈ 1.1 [139]. Thus, a white-Gaussian disorder does not reproduce the right
value of Σ, i.e., it emphasizes the role of non-Gaussian correlations in the effective
potential created by the collective pinning effect.

The presented values of ⟨γ⟩ and Σ were obtained by brute-force numerical cal-
culations of the dynamical plasmon propagation problem. Now, we show that these
values are reproduced by solving the plasmon transmission problem for the static
correlated random potential (4.16) upon averaging over its realizations. According
to problem §25.5 in Ref. [146], the low-frequency transmission at perfect impedance
matching (K = K0) for the wave equation (4.10) is given by

T(ω → 0) ≈ 4ω2

v2[ψ′
0(d)]2

, (4.63)

where ψ0(x) is the solution of Eq. (4.10) at ω = 0 satisfying the boundary conditions
ψ0(0) = 1 and ψ′

0(0) = 0. Equation (4.63) works at the sufficiently small frequency
for typical disorder configurations such that ψ′

0(d) ̸= 0. Note that ψ′
0(d) = 0 would

signal a zero-energy bound state, and resonant transmission, T ≈ 1, is not captured
by Eq. (4.63). An explicit solution of Eq. (4.10) reads

ψ0(x) = exp
[

ξ−1
∫ x

0
dy Z(y)

]
. (4.64)

Here, Z(x) = R⋆ψ′(x)/ψ(x) is another Ricatti variable from z defined in Eq. (4.40),
which solves an equation derived from Eq. (4.10) at ω = 0,

R⋆∂xZ(x) = −Z2(x) +
V(x)
ω2
⋆

with Z(0) = 0. (4.65)

Then, the transmission (4.63) can be expressed in terms of the Ricatti variable as

T(ω → 0) ≈ 4
(

ω

ω⋆

)2 1
Z2(d)

exp
[
− 2

R⋆

∫ d

0
dy Z(y)

]
. (4.66)

It was argued in Refs. [101, 102] that the solution of Eq. (4.65) with the correlated
random potential (4.16) has a positive mean value, ⟨Z(x)⟩ > 0. Thus, solving
Eq. (4.65) provides another way to find the Lyapunov exponent and its variance
from Eq. (4.66), which only depends on V(x), as mentioned above. This approach
yields ⟨γ⟩ R⋆ = 1.37 and Σ = 0.217, which are very close agreement with the results
of the brute-force numerical evaluation of scattering amplitudes at a low, but finite
frequency, ⟨γ⟩ R⋆ = 1.36 and Σ = 0.218, respectively.

4.4.2 Reflection coefficient

When we enter the low-frequency regime, the transmission is exponentially sup-
pressed and waves are almost perfectly reflected, r(ω) ≈ 1. In the limit of per-
fect impedance matching (K = K0), we characterize the reflection coefficients with
the distribution of the reflection phase [147, 148] (see Fig. 4.8). While the distribu-
tion is uniform at ω ≫ ω⋆, a single-peak structure near θ1 = ±π develops at a
lower frequency. At ω ≪ ω⋆, the peak in the distribution obtained from the brute-
force numerics takes a universal frequency dependence both in our model and in
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FIGURE 4.8: Probability distributions of the reflection phase θ1 at
K/K0 = 1.0, d/R⋆ = 20, ω/ω⋆ = 0.157 (green), 1.16 (red), and 8.58
(blue). The inset shows the universal frequency dependence of the
distribution found numerically in the vicinity of phase θ1 = −π ei-
ther by the brute force numerical calculations at ω/ω⋆ = 0.1 (blue)
and 0.25 (red), or from the solution of the Ricatti Eq. (4.65) (dashed
line). The dotted line represents the analytical formula derived in
Ref. [147] for a Gaussian white-noise disorder.

the Gaussian white-noise model, as shown in the inset of Fig. 4.8, with important
differences between the two models. Furthermore, the universal dependence in our
model agrees with the one obtained by solving numerically Eq. (4.65) in the interval
0 < x < d with a given boundary condition at x = d for various disorder configura-
tions. Then, we identify Z(0) = −2(ω/ω⋆)/(θ1 + π), which is the consequence of
the boundary conditions (4.11) and (4.13) with K = K0, ω/ω⋆ → 0, and r = eiθ1 . The
results do not depend on the boundary condition for Z(d) if d ≫ R⋆, e.g., d/R⋆ = 20
in the inset of Fig. 4.8.

The distribution P1(θ1) of the reflection phase θ1 can be seen as a measure of
the modes localized nearby an end of the pinned region and their frequencies lie
either above (θ1 > −π) or below (θ1 < −π) the one of the incoming waves. The
distribution P1(θ1) appears to reach zero at θ1 = −π, unlike the white-noise Gaus-
sian cases (see Appendix F), indicating the scarcity of low-frequency resonances.
This agrees with the strong suppression of the low-frequency modes’ density of
states [100, 101, 102] in our pinned model, in contrast with the Gaussian models.

The distribution P1(θ1), together with Eqs. (4.11) and (4.13), allows us to find the
statistics of the reflection phase at any impedance mismatch between the waveguide
and half-infinite chain, i.e., d/R⋆ → ∞. In particular, the real part of the averaged
reflection coefficient is〈

r′
〉
+ 1 =

∫
dθ1 P1(θ1)

2
1 + (K0/K)2 tan2(θ1/2)

. (4.67)

At ω ≪ ω⋆, the frequency scaling of the peak in P1(θ1) near θ1 = −π, which is
defined by

p(φ = (θ1 + π)ω⋆/ω) = (ω/ω⋆)P1((θ1 + π)ω⋆/ω), (4.68)
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FIGURE 4.9: The frequency dependence of the local density of states
at K/K0 = 0.01. The dashed line represents (ω/ω⋆)4. The pre-factor
is also agreement with Ref. [98]. The dotted line is the result of the
Gaussian white-noise model, (see Appendix F). Arrows indicate the
crossover frequency ωcr for each length, d/R⋆ = 20, 40, 80, and 160.

is independent of the frequency as demonstrated in the inset of Fig. 4.8. As a result,
we obtain 〈

r′
〉
+ 1 = A

(
K
K0

)2 ( ω

ω⋆

)2

, (4.69)

where the prefactor A can be evaluated by A =
∫

dφ p(φ)φ2 ≈ 2.4. At any K ≪ K0,
another important contribution to Eq. (4.67), which scales linearly with K/K0, comes
from phase near θ1 = 0, yielding

〈
r′
〉
+ 1 = 4π

K
K0

P1(θ1 = 0). (4.70)

Our numerical result for ⟨r′⟩ at K ≪ K0, shown in Fig. 4.9, confirms the result of
Ref. [98] and Eq. (4.70) with P1(θ1 = 0) ∝ ω4; in this regime [⟨r′(ω)⟩+ 1]/(K/K0)
can be interpreted as the local density of plasmon modes. However, we were not able
to correlate this result with the result of a direct evaluation of P1(θ1 = 0) illustrated
by Fig. 4.8, presumably due to an insufficient number of disorder configurations
because configuration yielding θ1 = 0 is rare. Furthermore, the deviation of the
numerical results from the ω4-scaling seen in Fig. 4.9 at the lowest frequencies is
suggestive of a crossover to the ω2-scaling of Eq. (4.69); our numerical results did
not allow us to check this scaling quantitatively. The different (K/K0)-dependence of
Eq. (4.70), compared with Eq. (4.69), ensures that it dominates over a wide frequency
range. The scarcity of low-frequency modes reflects in a much stronger suppression
of the local density of states ∝ ω4 at ω ≪ ω⋆ in our pinned model, in contrast
with the results of the white-noise Gaussian models where [⟨r′(ω)⟩+ 1]/(K/K0) ∝
1.29ω/ω⋆ (see Appendix F).

4.4.3 Average transmission

At any frequency in the range, the averaged transmission is determined by the opti-
mal configurations. Furthermore, the ratio ln ⟨T⟩ / ⟨ln T⟩ remains smaller than 1, in
accordance with the inequality between the arithmetic and geometric means. In Sec-
tion 4.3.3, we found ln ⟨T⟩ / ⟨ln T⟩ = 1/4 in the diffusive regime (ω ≫ ω⋆). In the
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strongly localized regime, this ratio increases towards the value ln ⟨T⟩ / ⟨ln T⟩ ≈ 0.9
(see Fig. 4.7). Its closeness to 1 indicates a small difference between the typical and
optimal disorder configurations. This is further confirmed by the fact that ensemble-
averaging of Eq. (4.63) yields a very close result for that ratio, ln ⟨T⟩ / ⟨ln T⟩ ≈ 0.93.
As disorder configurations with nearly-perfect transmission [131] are not taken into
account in Eq. (4.63), they should have a negligible weight among the optimal dis-
order configurations.

Note that the frequency scaling ⟨T(ω → 0)⟩ ∝ ω2 in Eq. (4.66) confirms that, for
the waves at the bottom of the plasmon spectrum, i.e., in the infinite wavelength
limit, the disorder potential acts like a localized one for each realization of the dis-
order. Our numerical results do not have enough accuracy to check this asymptote
quantitatively and to establish its range of validity.

For comparison, we expect disorder configurations with nearly-perfect transmis-
sion to play a major role at arbitrarily low frequency in the Gaussian models. This
may result in a different frequency dependence of ⟨T(ω)⟩ and ln ⟨T(ω)⟩ / ⟨ln T(ω)⟩
at ω ≪ ω⋆. As far as we know, this question has not been studied systematically.
Our numerical results indicate ln ⟨T(ω)⟩ / ⟨ln T(ω)⟩ ≈ 0.72 at ω ≪ ω⋆ in the Gaus-
sian white-noise model. We attribute the difference of the result from our pinned
model result, ln ⟨T(ω)⟩ / ⟨ln T(ω)⟩ ≈ 0.9, to the scarcity of low-frequency quasi-
localized modes in the latter.

4.5 Short summary of this chapter

We investigated the transmission though the disordered Josephson-junction chain.
In this thesis, we focused on the classical limit (K ≪ 1), in which there is a com-
petition between the elasticity and the pinning effect due to the disorder. By per-
forming the numerical calculation in that regime, we obtained the frequency de-
pendence of the transmission. For the high-frequency regime, the pinning effect is
expected to be neglected naively because the wavelength is shorter than the Larkin
length. Surprisingly, we found that the pinning-induced disorder still affects the
forward-scattering length. On the other hand, for the low-frequency regime, we
could gather the numerical pieces of the important quantities, such as the Lyapunov
exponent, the reflection phase, the local density of states, and the ratio between the
Lyapunov exponent and the logarithmic transmission and clarified the universality
of the scattering property. Moreover, by comparing our model with the well-known
model with the Gaussian white-noise disorder, we revealed that the correlations of
the pinning-induced disorder play a crucial role in reproducing our results. Finally,
we would like to stress that recent experimental technology enables us to fabricate
the Josephson-junction chain with a small but finite K [88, 89]. Therefore, the theo-
retical prediction in this chapter can indeed be checked experimentally in the near
future.
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Chapter 5

Heat Transport through the
Quantum Rabi System

In this chapter, we investigate heat transport through the quantum Rabi model [41].
First, we briefly review quantum heat transport in mesoscopic devices in Section 5.1.
Then, we introduce the quantum Rabi model and formulate heat transport through
it in Section 5.2. Using the noninteracting-blip approximation (NIBA), which is ex-
plained in Section 5.3, we present numerical results for the temperature dependence
of the thermal conductance in Section 5.4.

5.1 Quantum heat transport

In this section, we introduce recent theoretical and experimental advances on quan-
tum heat transport through a small object for which quantum mechanical effects
become important at sufficiently low temperatures. In a pioneering theoretical work
by John Pendry in 1983, he predicted that heat conducted by a single transport chan-
nel has a universal maximum at sufficiently low temperatures, which is known as a
quantized thermal conductance [149]. This quantized thermal conductance can be
observed for any type of carrier, e.g., phonons and photons. Based on the Landauer
theory [150, 151], which has been developed for electric transport, the heat current
for bosons between two heat baths, which are in thermal equilibrium, can be given
by

J = ∑
n

1
h

∫ ∞

0
d(h̄ω) h̄ωTn(ω) [nL(ω)− nR(ω)] , (5.1)

where ni(ω) is the Bose-Einstein distribution of the heat bath i = L, R, and Tn(ω) is
the transmission probability of the transport channel n. Here, assuming the perfect
transmission, Tn(ϵ) = 1, and a small temperature gradient, δT ≡ TL − TR ≪ T, we
obtain the linear thermal conductance as

G ≡ lim
δT→0

J
δT

= NGQ, (5.2)

where N is the number of transport channels and GQ is the thermal conductance
quantum

GQ =
π2k2

B
3h

T. (5.3)

In 2000, it has been observed experimentally for the first time that phonons in nanobridges
conduct heat with the linear thermal conductance GQ per a transport channel [152].
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FIGURE 5.1: View for the quantized thermal conductance in a
phononic system. The inset shows the suspended device, in which a
4× 4 µm2 phonon cavity (the bright area in the center) patterned from
the membrane is connected to four thin-film Nb bridges, phonon
waveguides whose diameter at the narrowest point is less than
200 nm. In the dark regions, the membrane has been completely re-
moved. The main panel shows the temperature dependence of the
thermal conductance normalized by 16g0 (16GQ in the main text).
These figures are taken from Ref. [152].

FIGURE 5.2: Schematic of heat transport through a two-level system
between two bosonic heat baths. For TL > TR, the heat current flows
from the left heat bath to the right heat bath.

Fig. 5.1 presents the measured thermal conductance, renormalized by 16GQ, through
nanobridgeds as a function of temperature. At high temperatures, T ≳ 0.8 K, the
thermal conductance shows the usual T3-dependence due to the phonon scatterings.
Below this temperature, T ≲ 0.8 K, the thermal conductance levels off a value near
the quantized thermal conductance, 16GQ. In Ref. [152], it was discussed that coeffi-
cient 16 consists of 4 from four independent bridges and 4 from four acoustic vibra-
tion modes in each bridge. Later, the quantized thermal conductance has also seen
in other systems; the superconducting circuit with microwave photons [153, 154].

As described in Section 2.8, the superconducting circuit is a convenient platform
for the study of quantum heat transport. One of the most fundamental systems is a
superconducting qubit embedded in two thermal photon baths fabricated in super-
conducting circuits, as shown in Fig 5.2. As described in Section 2.5, quantum heat
transport for this system can be described by the spin-boson model. The theoretical
study by the author of this thesis for the spin-boson model [38] has systematically
clarified the transport processes for all types of heat baths (the Ohmic bath s = 1,
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FIGURE 5.3: Three transport processes of heat transport through a
two-level system. (a) At weak couplings and temperatures compa-
rable to the renormalized tunneling splitting energy, one photon ab-
sorption (a-i) and emission (a-ii) processes are relevant; sequential
tunneling process. (b) At low temperatures, heat is carried by the vir-
tual excitation processes; the co-tunneling process. (c) At high tem-
peratures or strong couplings, heat transport is caused by the stochas-
tic transition between two degenerate states localized in each well;
incoherent tunneling process.

the sub-Ohmic bath s < 1, and the super-Ohmic bath s > 1 categorized by the ex-
ponent s of the spectral function; see Eq. (2.39)) by using the quantum Monte Carlo
simulations. Depending on the exponent of the spectral function s, the tempera-
ture T = TL + 0 = TR − 0, and the coupling strength α = αL = αR, the relevant
transport process changes (see Fig. 5.3). At weak couplings, α ≪ 1, and the in-
termediate temperature, kBT ∼ h̄∆̃, where ∆̃ is a renormalized tunneling splitting
frequency, one photon absorption and emission processes cause dominantly heat
transport (Fig. 5.3 (a); sequential tunneling process). As the temperature decreases,
kBT ≪ h̄∆̃, one photon processes, i.e., the sequential tunneling process, are sup-
pressed and then a virtual excitation associated with higher-order processes is rele-
vant for heat transport (Fig. 5.3 (b); co-tunneling process). This transport process is
associated with the Kondo effect, as discussed in Section 2.5. At high temperatures,
kBT ≫ h̄∆̃, or strong coupling, α > 1, the quantum coherence of the two-level system
is broken and then heat transport is induced by a stochastic transition between two
degenerate states localized in each well (Fig. 5.3 (c); incoherent tunneling process).

Thus, heat transport through a two-level system provides a concrete theoreti-
cal basis for describing quantum heat transport. However, it is too simple for the
discussion of sophisticated control of quantum heat devices because the number of
independent model parameters is not large. We also note that recent experiments
on heat transport through an assembly consisting of a superconducting qubit capac-
itively embedded between two superconducting resonators have indicated complex
functions as a quantum heat device [104, 106]. From the next section, we consider a
two-level system embedded between harmonic resonators, which is one of the more
ubiquitous devices in the current quantum computing toolbox, instead of a two-level
system for studying quantum heat transport.

5.2 Formalism for heat transport

In this section, we formulate heat transport through the quantum Rabi model in
the ultra-strong coupling regime. By using the exact mapping to the spin-boson
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model with structured heat baths, we derive the linear thermal conductance and its
asymptotic form for the weak dissipation.

5.2.1 Dissipative quantum Rabi model and spin-boson model

To treat heat transport through a two-level system embedded between harmonic
resonators, we consider the dissipative quantum Rabi model (see Fig. 5.4), whose
Hamiltonian consists of three parts:

H = HR + ∑
r
(HB,r +HI,r). (5.4)

Here, HR represents the quantum Rabi model describing the two-level system em-
bedded between harmonic resonators (indicated by the central part of Fig. 5.4 (a)
enclosed by the dashed line), HB,r the heat bath r (= L, R), and HI,r the coupling
between the harmonic resonator r and the heat bath r. Although the Hamiltonian
of the quantum Rabi model, HR, has already been given in Section 2.4, we briefly
repeat it here. The quantum Rabi model describes a two-level system coupled to
harmonic resonators and its Hamiltonian is given by

HR = − h̄∆
2

σx + ∑
r

h̄Ωra†
r ar + ∑

r
h̄grσz

(
ar + a†

r

)
, (5.5)

where ar (a†
r ) is an annihilation (a creation) operator of the harmonic resonator r

(= L, R), σi={x,y,z} are the Pauli matrices, and ∆ is a tunneling splitting frequency
of the two-level system. Ωr is a natural frequency of the harmonic resonator r, and
the frequency gr represents the coupling strength between the two-level system and
the harmonic resonator r. Here, we have dropped a detunning term of the two-level
system for simplicity.

The two heat baths coupled to harmonic resonators are modeled as a collection
of harmonic oscillators. The Hamiltonian of the heat bath r (= L, R) is given as

HB,r = ∑
k

h̄ωr,kb†
r,kbr,k (5.6)

with an annihilation (a creation) operator br,k (b†
r,k) of the k-th bosonic mode with the

frequency ωr,k in the heat bath r. The heat baths and the quantum Rabi model are
coupled to each other via the harmonic resonators:

HI,r = ∑
k

h̄λr,k

(
ar + a†

r

) (
br,k + b†

r,k

)
, (5.7)

where the frequency λr,k represents the coupling strength between the harmonic
resonator r and the k-th bosonic mode in the heat bath r. As discussed in Section 2.5,
each of the heat baths is completely characterized by a spectral density

Ir(ω) ≡ ∑
k

λ2
r,kδ (ω − ωr,k) . (5.8)

In this thesis, we consider the Ohmic heat baths (see also Section 2.5):

Ir(ω) = 2ηrω. (5.9)
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FIGURE 5.4: Schematic illustrations of the model considered in this
chapter. A two-level system with the tunneling splitting frequency
∆ is embedded between two harmonic resonators with natural fre-
quencies ΩL and ΩR which contacts to an Ohmic bath L and R, re-
spectively. The finite temperature difference (TL > TR) induces heat
transport from the left (hotter) heat bath to the right (cooler) heat bath.
Two ways of viewing the model; (a) the quntum Rabi model coupled
to two Ohmic heat baths which is called the dissipative quantum
Rabi model and (b) the two-level system coupled to two structured
heat baths composed of the harmonic resonator and the Ohmic heat
bath, which is equivalent to the spin-boson model. In this thesis, we
consider the symmetric case, ΩL = ΩR = Ω, gL = gR = g, and
ηL = ηR = η.

Here, ηr represents a dimensionless coupling strength between the heat bath r and
the harmonic resonator r.

Now, let us introduce the exact mapping of the model considered here by chang-
ing the way of viewing the model; from the quantum Rabi model coupled to Ohmic
heat baths, as shown in Fig. 5.4 (a), to the two-level system coupled to structured heat
baths, as shown in Fig. 5.4 (b). Then, the dissipative quantum Rabi model (5.4) can
be mapped to the spin-boson model (see the detail derivation in Appendix H) [155,
156, 83]:

Hsb = HTLS +HB +HI, (5.10)

HTLS = − h̄∆
2

σx, (5.11)

HB = ∑
r
HB,r = ∑

k,r
h̄Ξr,kB†

r,kBr,k, (5.12)

HI = ∑
r
HI,r = −σz

2 ∑
k,r

h̄Λr,k

(
Br,k + B†

r,k

)
, (5.13)

where Br,k (B†
r,k) is an annihilation (a creation) operator for the k-th bosonic mode

with the frequency Ξr,k in a new heat bath r, composed of the bare heat bath and
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the harmonic resonator, and Λr,k represents the coupling strength between the two-
level system and the k-th bosonic mode in the new heat bath r. The spectral density
characterizing the effective heat baths is expressed by

Ieff,r(ω) ≡ ∑
k

Λ2
r,kδ (ω − Ξr,k) = 2αrω

Ω4
r

(Ω2
r − ω2)2 + (2Γrω)2 , (5.14)

which is called as a structured spectral density. The spectral density Ieff,r(ω) has a
peak at the natural frequency of the harmonic resonator, Ωr, with the width, Γr =
πηrΩr, and its height is characterized by the dimensionless coupling strength αr =
ηr(4gr/Ωr)2.

At the end of this subsection, we comment on the region of ∆ ≪ Ωr. In this re-
gion, since the lowest two states of the quantum Rabi model are separated well from
the other, the dissipative quantum Rabi model can be regarded as the Ohmic spin-
boson model. This correspondence can also be seen from the spectral density (5.14),
i.e., the structured part of the spectral density can be neglected and then it becomes
Ohmic, Ieff,r(ω) ∼ 2αrω. Therefore, heat transport in this regime can be understood
by simply referring to the results on heat transport in the Ohmic spin-boson model,
as discussed in Section 5.1. This parameter regime is not preferable to control heat
transport because this effective two-level system shows a rather simple behavior for
heat transport with respect to the parameters. In fact, the degrees of freedom regard-
ing the harmonic resonators, i.e., Ωr, gr, and η, are absorbed into a renormalized tun-
neling splitting frequency ∆∗. In this thesis, we focus on the opposite region, ∆ ≳ Ω,
in which the present model is expected to exhibit non-trivial transport properties.

5.2.2 Linear thermal conductance

The heat current mediated via the quantum Rabi model from the heat bath r is de-
fined as

Jr ≡ −dHB,r

dt
. (5.15)

Using the picture of the spin-boson model with the structured heat bath (5.10), the
steady state heat current is formulated by the Keldysh formalism as [157, 158, 107]

⟨Jr⟩ =
h̄2

2

∫ ∞

0
dω ωIeff,r(ω)

{
Im
[
χR(ω)

]
nr(ω)− i

2
χ<(ω)

}
, (5.16)

where nr(ω) = 1/(eβrω − 1) is the Bose-Einstein distribution for the structured heat
bath r, βr = 1/kBTr is the inverse temperature, kB is the Boltzmann constant, and
Tr is the temperature of the heat bath r (for a detailed derivation, see Appendix G).
The retarded and lesser components of the spin correlation function of the two-level
system are defined as

χR(t) ≡ − i
h̄

θ(t) ⟨[σz(t), σz(0)]⟩ , (5.17)

χ<(t) ≡ − i
h̄
⟨σz(t)σz(0)⟩ , (5.18)

respectively. For simplicity, we consider the symmetric case, ΩL = ΩR ≡ Ω, gL =
gR ≡ g, and ηL = ηR ≡ η in this thesis. Using the energy conservation law, ⟨JL⟩+
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⟨JR⟩ = 0, we finally obtain the heat current as

⟨JL⟩ =
αγh̄2

8

∫ ∞

0
dω ω Ĩeff(ω)Im

[
χR(ω)

]
[nL(ω)− nR(ω)] (5.19)

with α = αL + αR, γ = 4αLαR/α2, and Ĩeff(ω) = α−1
r Ieff,r(ω).

Using the expression of the heat current, we obtain the linear thermal conduc-
tance as

κ ≡ lim
TL,TR→T

⟨JL⟩
TL − TR

(5.20)

=
αγh̄kB

8

∫ ∞

0
dω Ĩeff(ω)Im

[
χR(ω)

] [ βh̄ω/2
sinh(βh̄ω/2)

]2

. (5.21)

For the convenience of analysis, we introduce a symmetrized correlation function,

S(t) =
1
2
⟨σz(t)σz(0) + σz(0)σz(t)⟩ . (5.22)

From the fluctuation-dissipation theorem [17], the imaginary part of the retarded
component of the spin correlation function is related to the symmetrized correlation
function as

S(ω) = h̄ coth
(

βh̄ω

2

)
Im
[
χR(ω)

]
. (5.23)

Then, the linear thermal conductance is rewritten as

κ =
αγkB

16

∫ ∞

0
dω Ĩeff(ω)S(ω)

(βh̄ω)2

sinh(βh̄ω)
. (5.24)

Due to the factor (βh̄ω)2/ sinh(βh̄ω) in the integral, the behavior of the linear ther-
mal conductance is mainly determined by the symmetrized correlation function in
the region of 0 < ω ≲ kBT/h̄.

5.2.3 Weak-dissipation regime

Here, we consider the behavior of the linear thermal conductance for the weak dissi-
pation, i.e., η ≪ 1. First, we look at the non-dissipative quantum Rabi model, η = 0,
for which the eigenstates and their energy are denoted as |n⟩ and h̄ωn, respectively:

HR |n⟩ = h̄ωn |n⟩ , (n = 0, 1, 2, . . . ). (5.25)

Then, the symmetrized correlation function S(ω) is described as

S(ω) =
π

ZR
∑
n,m

e−βh̄ωm |⟨n|σz|m⟩|2 [δ(ω − ωnm) + δ(ω + ωnm)] , (5.26)

where ZR is the partition function of the quantum Rabi model and ωnm = ωn − ωm
is the transition frequency between the m-th and n-th states. When switching slowly
on the dissipation η, the peaks in S(ω) have finite widths from the delta-function
ones. In general, their positions and widths vary as the dissipation increases. How-
ever, in the weak-dissipation regime (η ≪ 1) these effects are weak enough that the
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expression of S(ω) in the non-dissipative quantum Rabi model (5.26) can be used
approximately.

At low temperatures, the behavior of S(ω) is determined mainly by transitions
from the ground state. Then, the symmetrized correlation function is approximated
as

S(ω) ≈ π ∑
n
|⟨n|σz|0⟩|2 [δ(ω − ωn0) + δ(ω + ωn0)] . (5.27)

By substituting this expression into Eq. (5.24), the linear thermal conductance is ob-
tained as

κ ≈ παγkB

16 ∑
n
|⟨n|σz|0⟩|2 Ĩeff(ωn0)

(βh̄ωn0)2

sinh(βh̄ωn0)
. (5.28)

As a simple example, let us consider the case that the temperature is comparable
to the first transition energy, kBT ∼ h̄ω10, and the first transition energy is much
smaller than the other, ω10 ≪ ωn0 (n ≥ 2). For this case, the thermal conductance is
approximated as

κ ≈ παγkB

16
Ĩeff(ω10)

(βh̄ω10)
2

sinh(βh̄ω10)
. (5.29)

From this expression, the thermal conductance shows the Schottky-type tempera-
ture dependence [36, 37, 23, 38]; it has a peak near h̄ω10/kB and shows exponential
suppression, κ(T) ∼ T−2e−h̄ω10/kBT, for kBT ≪ h̄ω10. When the transition energy
to the second excited state, h̄ω20, is also comparable to the temperature, the linear
thermal conductance is approximated as a sum of the two Schottky functions. This
implies that the linear thermal conductance is expected to have two peak structure
as a function of the temperature. We will discuss this characteristic behavior numer-
ically in Section 5.4 in detail. The weak-dissipation approximation discussed here is
useful for qualitative discussion on the temperature dependence of the linear ther-
mal conductance. However, since the dissipation indeed affects the peak positions
and peak broadening, we need a more sophisticated approximation for quantitative
discussion. In the next section, we will introduce an alternative approximation.

5.3 Non-interacting blip approximation

In this section, we introduce the noninteracting-blip approximation (NIBA), which
works well in a wide parameter region including the strong system-bath coupling
regime [16, 17, 38], and apply it to the linear thermal conductance.

First, let us consider the time evolution of the population ⟨σz(t)⟩. It is described
by the generalized master equation

d ⟨σz(t)⟩
dt

= −
∫ t

0
dt′ Kz(t − t′)

〈
σz(t′)

〉
. (5.30)

Here, the kernel Kz(t) can describe non-Markivian dynamics of the population ⟨σz(t)⟩.
Although, in general, the non-local kernel is a complicated structure, it takes a sim-
ple form in the NIBA [16, 17],

Kz(t) = ∆2e−Q′(t) cos Q′′(t), (5.31)
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where Q(t) = Q′(t) + iQ′′(t) is the complex bath correlation function, the real and
imaginary parts are

Q′(t) =
∫ ∞

0
dω

Ieff(ω)

ω2 coth
(

βh̄ω

2

)
(1 − cos ωt), (5.32)

Q′′(t) =
∫ ∞

0
dω

Ieff(ω)

ω2 sin ωt, (5.33)

respectively, with Ieff(ω) = Ieff,L(ω) + Ieff,R(ω). When the spectral density is the
structured one as Eq. (5.14), we can calculate the complex bath correlation function
explicitly as follows [159, 83]:

Q′(t) = πα

[
2

h̄β
t − L

(
e−Γt cos Ω̄t − 1

)
− Ze−Γt sin Ω̄t + Q′

Mats(t)
]

, (5.34)

Q′′(t) = πα
[
1 − e−Γt (cos Ω̄t − N sin Ω̄t)

]
, (5.35)

where

Ω̄ =
√

Ω2 − Γ2, N =
Ω2 − 2Γ2

2ΓΩ̄
, (5.36)

L =
N sinh(βh̄Ω̄)− sin(βh̄Γ)
cosh(βh̄Ω̄)− cos(βh̄Γ)

, (5.37)

Z =
sinh(βh̄Ω̄) + N sin(βh̄Γ)
cosh(βh̄Ω̄)− cos(βh̄Γ)

, (5.38)

and Q′
Mats(t) is a series with respect to the Matsubara frequency, νn = 2πn/(h̄β),

Q′
Mats(t) =

4Ω4

h̄β

∞

∑
n=1

1
νn

1 − e−νnt

(Ω2 + ν2
n)

2 − (2Γνn)2 . (5.39)

The symmetrized correlation function S(ω) can be related to the non-local kernel
as [17]

S(ω) = Re
[

2
−iω + K̂z(−iω)

]
, (5.40)

where K̂z(λ) is the Laplace transformation of Kz(t). By using Eqs. (5.31)-(5.40) and
(5.24), we can calculate the linear thermal conductance numerically within the NIBA.
In general, the NIBA is justified at arbitrary temperatures for the weak system-bath
coupling or for incoherent transport realized at the high temperature or the strong
system-bath coupling [17, 16]. Moreover, even when the system-bath coupling is
not weak, the NIBA fails at sufficiently low temperatures where heat transport is
induced by virtual excitations, i.e., the co-tunneling process is dominant (see Sec-
tion 5.1) [38]. However, the deviation from the exact results remains small as far as
the system-bath coupling is sufficiently weak.

5.4 Numerical results

In this section, we present the numerical results for the symmetrized correlation
function and the linear thermal conductance using the NIBA for Ω ≲ ∆, where heat
transport is expected to be non-trivial, as discussed in Section 5.2.
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FIGURE 5.5: Symmetrized correlation function S(ω) as a function of
the frequency for different Ω/∆ at fixed other parameters as g/∆ =
0.5, η = 0.01, kBT/(h̄∆) = 0.01. The symmetrized correlation func-
tion has several peaks and the peaks at the lower frequency are more
dominant. The black arrows indicate the first peak at ω∗

10/∆ = 0.096
and the second one at ω∗

20/∆ = 0.54 at Ω/∆ = 0.5. The solid and dot-
ted arrows represent the lowest two transition frequencies of the non-
dissipative quantum Rabi model, ω10 and ω20, respectively, which are
obtained by the exact diagonalization of the non-dissipative quantum
Rabi model. The inset represents a ratio between the frequencies of
the first and second peaks, ω∗

10/ω∗
20, as a function of Ω/∆.

5.4.1 Symmetrized correlation function

First, we show the symmetrized correlation function, S(ω), in Fig. 5.5 for g/∆ = 0.5,
η = 0.01, and kBT/(h̄∆) = 0.01. From this figure, the symmetrized correlation func-
tion has several peaks corresponding to the transition frequencies of the dissipative
quantum Rabi model, as indicated by the approximation for the weak dissipation
(see Section 5.2). This multi-peak structure derives from the multilevel property of
the quantum Rabi model. However, the peak positions are slightly shifted from the
transition frequencies of the non-dissipative quantum Rabi model due to the dissi-
pation even for small dissipation, η = 0.01. For later discussion, we introduce the
renormalized frequencies ω∗

n0 corresponding to the n-th peak in the symmetrized
correlation function.

5.4.2 Linear thermal conductance

Next, we consider the linear thermal conductance. Fig. 5.6 (a) shows the temperature
dependence of the linear thermal conductance for g/∆ = 0.5, η = 0.01, and different
Ω/∆. For Ω/∆ = 0.4, it is clear that there are two peaks in the temperature de-
pendence. We also see that the two-peak structure becomes less significant as Ω/∆
increases from 0.4 to 0.8. This feature originates from the first and second peaks of
the symmetrized correlation function, ω∗

10 and ω∗
20, respectively (see Fig. 5.5). Then,

its temperature dependence can be qualitatively described by the sum of the two
Schottky-type functions, T−2e−h̄ω∗

10/kBT and T−2e−h̄ω∗
20/kBT, which leads to the two-

peak structure. The two-peak structure is a signature of the multilevel property of
the quantum Rabi model and can be clearly observed only when the symmetrized
correlation function has sharp well-separated peaks. We show the temperature de-
pendence of the linear thermal conductance for Ω/∆ = 0.5, g/∆ = 0.5, and different
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FIGURE 5.6: Temperature dependence of the linear thermal conduc-
tance for Ω/∆ = 0.5, g/∆ = 0.5, and η = 0.01. When varying (a)
Ω/∆ = 0.4 − 0.8, (b) η = 0.01 − 0.1, and (c) g/∆ = 0.3 − 0.7, the lin-
ear thermal conductance considerably changes between the one- and
two-peak structures.
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FIGURE 5.7: Linear thermal conductance as a function of Ω/∆ for
g/∆ = 0.5, η = 0.01, and different temperatures kBT/(h̄∆) = 0.01
and 0.02. The inset is an enlarged view of the high-frequency side of
the peak frequency. The dashed line represents a guide for the power
law (Ω/∆)−6.

η in Fig. 5.6 (b). As η increases from 0.01 to 0.1, the peak at the low-temperature
side becomes less significant. This is because the peaks in the symmetrized correla-
tion function are broadened due to the dissipation and are smoothed out them after
performing the integral in Eq. (5.24).

Now, let us discuss the detailed condition for the appearance of the two-peak
structure in the linear thermal conductance (5.24). If the peaks in the symmetrized
correlation function are sufficiently sharp, the linear thermal conductance is approx-
imately evaluated as

κ(T) ∼ a1
e−1/T̃

(kBT)2 + a2
e−(ω∗

20/ω∗
10)/T̃

(kBT)2 , (5.41)

where T̃ = kBT/(h̄ω∗
10) and the prefactors are

an =
παγkB

8
| ⟨n| σz |0⟩ |2(h̄ω∗

n0)
2 Ĩeff(ω

∗
n0). (5.42)

From this expression, one can see that the condition ω∗
20/ω∗

10 ≫ 1 is required to
have the two-peak structure in the temperature dependence of the linear thermal
conductance. Note that although the ratio between a1 and a2 contributes to the ap-
pearance of the two peaks, it is almost irrelevant. This condition can be confirmed
by the comparison between Fig. 5.5 and Fig. 5.6 (a). As Ω/∆ increases from 0.4 to
0.8, the ratio ω∗

20/ω∗
10 is reduced from 13.9 to 2.87, as shown in the inset of Fig. 5.5.

With the decreasing of ω∗
20/ω∗

10, the two-peak structure becomes less significant (see
main panel in Fig. 5.6 (a)). This feature can be also observed from the dependence
of the hybridization constant g. Fig. 5.6 (c) shows the temperature dependence of
the linear thermal conductance for Ω/∆ = 0.5, η = 0.01, and different g/∆. It is
observed that as g/∆ increases from 0.3 to 0.7, the two-peak structure becomes more
significant. This is because the ratio ω∗

20/ω∗
10 is enlarged due to the level repulsion

as the hybridization g increases.
When we choose the parameters for which the two-peak structure is clearly ob-

served, the linear thermal conductance is sensitive to the parameters, particularly
to Ω/∆. In Fig. 5.7, we show the linear thermal conductance as a function of Ω/∆
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for two different temperatures. The linear thermal conductance has a sharp peak at
Ω = Ω0, where Ω0/∆ ≈ 0.40 and 0.44 for kBT/(h̄∆) = 0.01 and 0.02, respectively.
While it decays exponentially in the smaller Ω/∆ side of the peak, it shows a power-
law decay in the opposite side, whose exponent is −6 (see the inset in Fig. 5.7). The
strong dependence of Ω/∆ has an advantage for the application of heat transistor or
heat valve in mesoscopic heat devices.

Now, we comment on the power-law decay for large Ω/∆ in the linear thermal
conductance as a function of Ω/∆. It is a signature of the co-tunneling process in
which heat transport is induced by the tunneling process via virtual excitations, as
discussed in Section 5.1. At low temperatures, kBT ≪ h̄Γ, h̄Ω̄, h̄ω∗

20, it is supposed
the system behaves effectively like the Ohmic spin-boson model with a single pa-
rameter ω∗

10 because the high-energy states are almost irrelevant. Furthermore, for
kBT ≲ 0.1h̄ω∗

10, thermal excitation from the ground state to the first excited state is
strongly suppressed, and then heat transport is governed by the co-tunneling pro-
cess for which the linear thermal conductance is written as [37, 23, 38]

κ ≈ π3γk4
B

30
α2χ2

0T3, (5.43)

where the static spin susceptibility χ0 of the effective Ohmic spin-boson model is
roughly approximated as 2/(h̄ω∗

10) for the weak coupling, α ≪ 1. Using α =
η(4g/Ω)2 and ω∗

10 ∝ Ω for Ω ≲ ∆, we obtain κ(Ω) ∝ Ω−6, which is consistent
with the numerical result shown in the inset of Fig. 5.7.

5.4.3 Rotating-wave approximation

Finally, we comment on the contribution of the counter-rotating terms. By neglect-
ing the counter-rotating terms, i.e., the rotating-wave approximation to the quantum
Rabi model, we obtain the Jaynes-Cummings model, as discussed Section 2.4. While
these two models give almost the same results in weak coupling regime, g/∆ ≪ 1,
they are different in the ultrastrong coupling regime, g/∆ ≳ 1. We stress that the
qubit-resonator system in the ultrastrong coupling regime can be described not by
the Jaynes-Cumming model but by the quantum Rabi model because the rotating-
wave approximation fails in that regime. However, it would be instructive and use-
ful to consider the Jaynes-Cummings model as a mathematical model or a model
that may be realized in systems other than superconducting circuits. Since it is cum-
bersome to construct the NIBA for the Jaynes-Cummings model, we employ the
approximation for the weak dissipation (η ≪ 1) with the same procedure in Sec-
tion 5.2.

For the convenience of later discussion, we introduced new Pauli operators, τx,y,z,
defined as

τx = σz, τy = σy, τz = −σx. (5.44)

This corresponds to a rotation of the coordinate around the y-axis by π/2. We also
introduce the state vectors of the two-level system, |0⟩ and |1⟩, as eigenstates of τz as

τz |0⟩ = − |0⟩ , τz |1⟩ = + |1⟩ . (5.45)

For a decoupled system (g = 0), |0⟩ and |1⟩ correspond to the ground and excited
states of the two-level system, respectively. Moreover, we define τ+ = |1⟩ ⟨0| and
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τ− = |0⟩ ⟨1|. Using these new operators and the identity τx = τ+ + τ−, the Hamilto-
nian of the quantum Rabi model can be rewritten as

HR =
h̄∆
2

τz + ∑
r

h̄Ωra†
r ar + ∑

r
h̄gr (τ+ + τ−)

(
ar + a†

r

)
. (5.46)

After dropping the counter-rotating terms including τ+a† and τ−a by applying the
rotating-wave approximation, we finally obtain the Jaynes-Cummings model as

HJC =
h̄∆
2

τz + ∑
r

h̄Ωra†
r ar + ∑

r
h̄gr

(
τ+ar + τ−a†

r

)
. (5.47)

For simplicity, we consider the symmetric case, ΩL = ΩR ≡ Ω and ηL = ηR ≡ η.
Introducing new operators

A =
aL + aR√

2
, B =

aL − aR√
2

, (5.48)

corresponding to symmetric and antisymmetric modes, respectively, the Hamilto-
nian is expressed as

HJC = HA +HB, (5.49)

HA =
h̄∆
2

τz + h̄ΩA† A +
√

2h̄g
(

τ+A + τ−A†
)

, (5.50)

HB = h̄ΩB†B. (5.51)

From this expression, since the antisymmetric mode is completely decoupled with
the two-level system, it does not contribute heat transport through a two-level sys-
tem. Thus, it is sufficient to consider only the Hamiltonian HA.

The Jaynes-Cummings model conserves the total number of particles, whose op-
erator is N̂ = τ+τ− + A† A while the quantum Rabi model does not. The basis of the
Jaynes-Cummings model, |τ⟩ ⊗ |n⟩, has an eigenvalue N = τ + n, where τ (= 0, 1)
and n (= 0, 1, 2, . . . ) assign the states of the two-level system and the symmetric
mode, respectively. It is easy to show the ground state is given as |0⟩ ⊗ |0⟩. For the
excited states, there are two eigenstates belonging to the same N (≥ 1):

|i; N⟩ = aNi |0⟩ ⊗ |N⟩+ bNi |1⟩ ⊗ |N − 1⟩ , (i = 1, 2), (5.52)

where aNi and bNi are quantum amplitudes.
At low temperatures, the symmetrized correlation function is determined by the

transitions from the ground state dominantly. Then, the symmetrized correlation
function is written as

SJC(ω) ≈ π ∑
i=1,2

| ⟨i; 1| τx |0; 0⟩ |2δ(ω − ωi,1 + ω0,0), (5.53)

where h̄ωi,N is an energy eigenvalue of |i; N⟩. Here, we have used the fact that the
operator τx changes the eigenvalue N only by one. Thus, the existence of the con-
served quantity, N, strongly restricts the possible transitions from the ground state
to the excited states. However, the expression of the symmetrized correlation func-
tion in the Jaynes-Cummings model (5.53) indicates that it has indeed two peaks at
ω = ωi,1 −ω0,0 (i = 1, 2). Therefore, we can conclude that the two-peak structure ap-
pears in the temperature dependence of the linear thermal conductance even for the
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Jaynes-Cummings model when ω20/ω10 ≫ 1. Note that since the energy spectrum
differs between the Jaynes-Cummings and the quantum Rabi models, particularly in
the ultra-strong coupling regime [60], they give qualitatively different temperature
dependences for the linear thermal conductance there.

5.5 Short summary of this chapter

We studied heat transport through an assembly, a two-level system embedded be-
tween harmonic resonators, described by the quantum Rabi model. By mapping the
quantum Rabi model to the spin-boson model with the structured bath and using the
noninteracting-blip approximation (NIBA), we calculated the linear thermal conduc-
tance. As a result, we discovered that the linear thermal conductance shows the two
peaks as a function of the temperature in the ultrastrong coupling regime. We found
that this characteristic behavior comes from the multiple levels in the quantum Rabi
model. In addition, we found that the linear thermal conductance changes sensi-
tively to the tunable parameter, particularly the natural frequency of the harmonic
oscillators.
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Chapter 6

Summary and Perspectives

In this thesis, we have studied three problems on transport properties of the super-
conducting circuits from several viewpoints. We have theoretically discussed vari-
ous transport properties, in particular, with emphasis on many-body effects induced
by system-environment coupling, Coulomb interaction, and disorder.

In Chapter 3, we investigated the quantum critical phenomena in the microwave
scattering off a superconducting charge qubit coupled to an RLC transmission line,
which is effectively described by the sub-Ohmic spin-boson model. This model
exhibits a zero-temperature quantum phase transition at zero temperature due to
the coupling between the two-level system and the heat bath. By performing the
continuous-time quantum Monte Carlo simulation, we observed quantum critical
behavior in the frequency dependence of the reflection loss consistent with analytic
results using the renormalization group analysis. Moreover, by using the general
relation between the circuit impedance and the spectral density of the heat bath, we
showed that the sub-Ohmic heat bath could be constructed by the arrays of the RLC
circuits whose circuit constants depend on the spacial positions. This study paves
a path toward the observation of quantum critical phenomena in superconducting
circuits in a controllable way. Because various types of quantum measurement on
qubits are possible in superconducting circuits, it would be a challenging task to
study the effect of its back-action on quantum phase transition.

In Chapter 4, we considered a one-dimensional Josephson-junction chain with
the disorder and studied the transmission through it. The disordered Josephson-
junction chain exhibit a superfluid-Bose glass transition at a critical Luttinger param-
eter Kc = 3/2, where the Luttinger parameter K is related to the circuit impedance
as Z = RQ/(2K). We focused on the classical limit (K ≪ 1), corresponding to
the deep insulating regime, where the collective pinning affects an elastic scattering
property in a wide frequency range. In the high-frequency regime, we investigated
the transmission using the Fokker-Planck approach. The analytical formulas for the
transmission agree with numerical results obtained by solving the Schödinger equa-
tion. Surprisingly, we found that the correlations of the pinning-induced disorder
still affect the forward-scattering length despite the wavelength being shorter than
the Larkin length. In the low-frequency regime, the localization becomes strong
and the analytical approach does not work. To obtain information on this strongly-
localized regime, we performed a brute-force numerical calculation. We found that
the Lyapunov exponent is significantly increased, and its variance is suppressed in
comparison with the well-known model with the Gaussian white-noise disorder. We
show that the ratio ln ⟨T(ω)⟩ / ⟨ln T(ω)⟩ takes a value near 1, indicating the strong
correlation between the typical disorder configurations and rare disorder configura-
tions optimal for the transmission determines the low-frequency transport proper-
ties. From the fact that the transmission is exponentially suppressed, we also found
signatures of the scarcity of the localized low-frequency plasmon modes. It also
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affects the distribution of the reflection phase. These observables make out unique
signatures of the non-Gaussianity of the pinned chain. We expect that our study pro-
vides benchmarks for further developments of the dynamics in quantum Bose glass.
It is an important future problem to investigate the effect of large quantum fluctua-
tion (K ∼ 1) beyond the classical regime (K ≪ 1). It is also a fascinating problem to
extend the present work to the experiment of inelastic microwave scattering.

Finally, we studied heat transport through the quantum Rabi model consisting
of a superconducting qubit embedded between superconducting LC resonators. By
using the exact mapping to the spin-boson model and the non-perturbative approx-
imation, we evaluated the linear thermal conductance. In the ultra-strong coupling
regime, the temperature dependence of the linear thermal conductance has a two-
peak structure. This characteristic behavior comes from the fact that there are mul-
tiple levels in the quantum Rabi model and can not be observed in heat transport
through a simple two-level system. Moreover, we found that the linear thermal con-
ductance is highly sensitive to the controllable parameters, particularly to the natural
frequency of the harmonic resonators. This property is advantageous to the appli-
cation of well-controllable nanoscale heat devices such as a heat transistor. In this
thesis, we restricted ourselves to the linear response theory to study quantum heat
transport. For studying the rectification effect in heat transport through nanoscale
objects, we need to expand our theory beyond the linear response.

In the last part of this chapter, we describe future perspectives of the present
theoretical work. There are several future problems that may bring fruitful physics.
First of all, this thesis treated only thermal equilibrium properties regarding to many-
body effects in the superconducting circuits. While equilibrium properties are fun-
damental and important, the systems being in equilibrium is just a part of realistic
systems. Therefore, it is important to expand our results toward non-equilibrium
states under large temperature/voltage biases or strong excitations by microwaves.
Next, it will be a fascinating problem to combine the many-body effects with quan-
tum measurement. Thanks to the technological development in the superconducting
circuit, the environment (e.g., a transmission line and a Josephson-junction chain)
can be monitored mode by mode experimentally. It allows us to consider the ef-
fect of the quantum measurement of a small quantum system on the environments,
i.e., “backaction”. For example, by performing the quantum measurement to a su-
perconducting qubit coupled to environments, we can trace how the quantum mea-
surement affects modes in the environments. It is not only important in the aspect of
fundamental physics but also expected to be helpful for quantum processing. Third,
in the superconducting circuit, quantum dynamics away from the equilibrium states
can be simulated. For example, in the superconducting circuit, we can switch on and
off the interaction between an impurity and the Josephson transmission line by tun-
ing a flux through. This setup enables us to study quantum quench dynamics of
the many-body states in a controllable way. The theoretical investigation of such
dynamics in superconducting circuits is also an important future problem. We ex-
pect that these general future problems will attract the interest of researchers in the
near future. We hope that the present theoretical work will contribute to taking an
important step towards future development in this direction.
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Appendix A

Lagrangian and Hamiltonian for a
transmission line

In this appendix, we derive the Lagrangian and Hamiltonian of the transmission
line.

The transmission line is a long circuit in which electromagnetic waves can prop-
agate freely. In the transmission line, the voltage and the current change over its
length. Therefore, the capacitance and the inductance are represented in the density
at a position, c and l, respectively. The lumped element model of the transmission
line is a series of the LC-circuit with the inductance ldx and the capacitance cdx,
where dx is a spacing, per unit length as shown in Fig. A.1.

This formalism is valid not only for the transmission line but also for any linear
circuit system. The Lagrangian of the lumped element model can be written down
as

L =
1
2

˙⃗ϕtC ˙⃗ϕ − 1
2

ϕ⃗tL−1ϕ⃗, (A.1)

where ϕ⃗ is a vector whose components are the flux at node n = 1, 2, . . . , N,

ϕ⃗ =


ϕ1
ϕ2
...

ϕN

 , ˙⃗ϕ =


ϕ̇1
ϕ̇2
...

ϕ̇N

 . (A.2)

The capacitance matrix C and the inductance matrix L are real and symmetric. Note
that what the Lagrangian can be written in the quadratic form means that the system
is linear. Using the Euler-Lagrange equation, the evolution of the fluxes is described
by

¨⃗ϕ = −C−1L−1ϕ⃗. (A.3)

FIGURE A.1: Lumped element model of the transmission line.
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From this equation, the system has resonance frequencies, and they are given by
positive square root of the eigenvalues of the matrix C−1L−1.

By performing the Legendre transformation, the Lagrangian provides the Hamil-
tonian

H =
1
2

Q⃗tC−1Q⃗ +
1
2

ϕ⃗tL−1ϕ⃗, (A.4)

where Q⃗ is a vector of charges at each node and has the relation to the flux,

Q⃗ = C ˙⃗ϕ. (A.5)

The charge component at node n is conjugate to the flux at the same node,

[Qn, ϕm] = ih̄δn,m. (A.6)

Note that the Hamiltonian (A.4) and the commutation relation (A.6) recover ones of
the LC-circuit (2.6) and (2.5) when one restricts a single node.

Now, we treat the transmission line as a quantum mechanical problem by re-
placing Q⃗ and ϕ⃗ with operators [160]. First, let us introduce bosonic annihilation
and creation operators an and a†

n, respectively, which satisfy the commutation rela-
tion [an, a†

m] = δn,m,

ϕn =

√
h̄
2

N

∑
m=1

An,m

(
am + a†

m

)
, (A.7)

Qn = −i

√
h̄
2

N

∑
m=1

Bn,m

(
am − a†

m

)
. (A.8)

To hold the commutation relation, the coefficient matrices A and B has a relation,

ABt = 1. (A.9)

Using new variables, the Hamiltonian becomes

H =
h̄
4

N

∑
j,k=1

{(
aj + a†

j

) [
BtC−1B

]
j,k

(
ak + a†

k

)
−
(

aj − a†
j

) [
AtL−1A

]
j,k

(
ak − a†

k

)}
.

(A.10)

The coefficient matrices A and B are chosen as matrices that diagonalize L and C,
respectively, such that

AtL−1A = BtC−1B =


ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...
0 0 · · · ωN

 . (A.11)

In this choice, one can easily see that the columns of the coefficient matrix A are the
eigenvectors of C−1L−1 with eigenvalues ω2

n.
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Finally, we can obtain the Hamiltonian on the diagonal basis,

H =
N

∑
n=1

h̄ωn

(
a†

nan +
1
2

)
, (A.12)

which means that a linear circuit with the inductances and capacitances is equivalent
to a collection of harmonic oscillators.

Now, we consider transmission line with the constant element density. In the
transmission line, the capacitance and inductance matrices are

C

cdx
= L−1ldx =



1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 1


, (A.13)

and eigenvalues of L−1C−1 are constant ω2
n = [1/(

√
lcdx)]2.

Finally, we consider the continuum limit, dx → 0, of the transmission line. In
this limit, the flux (charge) variable becomes a functions of position x, ϕn → ϕ(x)
(Qn → Q(x)dx). Thus, the Lagrangian (A.1) reads

L =
∫ d

0
dx
{

c
2
[∂tϕ(x, t)]2 − 1

2l
[∂xϕ(x, t)]2

}
, (A.14)

where d is the length of the transmission line and Euler-Lagrange equation for the
Lagrangian provides the wave equation for the flux

v2∂2
xϕ(x, t)− ∂2

t ϕ(x, t) = 0, (A.15)

with the velocity v = 1/
√

lc. Note that when imposing the open boundary condi-
tion, ∂xϕ(0, t) = ∂xϕ(d, t) = 0, the position dependence of the flux is separable,
ϕ(x, t) = ∑n ϕ(x) cos(πnx/d), and thus one can recover the equation (A.3). Fi-
nally, by performing the Legendre transformation, we obtain the Hamiltonian for
the transmission line in the continuum limit, Eq. (2.10) in the main text. It is clear
that the Hamiltonian and the commutation relation of the transmission line in the
continuum limit are natural extensions of the LC-circuit.





87

Appendix B

Lagrangian for a
Josephson-junction chain

In this appendix, we derive the Lagrangian for the one-dimensional Josephson-
junction chain shown in Fig. B.1. As discussed in Section 2.2, the Hamiltonian of
a single Josephson junction is given by

H = EJ (1 − cos φ) + ECq2, (B.1)

where EJ is the Josephson energy, EC = (2e)2/(2C) is the charging energy at the
Josephson junction, q is the quasicharge on the Josephson junction, and φ is the
phase difference across the Josephson junction. In this thesis, we consider the limit
EJ ≫ EC, which corresponds to the transmon limit (see Section 2.3), to decrease
quantum fluctuations of the phase across a single Josephson junction due to the
quantum phase slips. In the transmon limit, each energy band is almost flat and
the transition frequency between each band is estimated as the plasma frequency
Ω =

√
2EJEC/h̄ (see Fig. 2.5). When considering only the lowest energy band, the

plasma frequency plays the role of the ultraviolet cutoff in the low-energy theory.
Then, eigenenergies in the lowest band are given by

EQPS = −Λ cos(2πq), (B.2)

where the half-band width Λ is determined by quantum phase slip, i.e., a non-
perturbative process in which the phase difference across the Josephson junction
φn jumps by ±2π due to quantum tunneling between the minima of the Josephson

••• •••

FIGURE B.1: Josephson-junction chain consisting of Josephson junc-
tions with the Josephson energy EJ and the Josephson capacitance CJ,
ground capacitances Cg, and phenomenological inductances L. The
elementary cell length is a. The quasicharge on the n-th Josephson
junction is qn. The blue dots represent the superconducting islands.
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energy. The amplitude of the quantum phase slip is given as

Λ =
8√
π

(
2E3

J EC
)1/4

e−
√

32EJ/EC . (B.3)

This is associated with the conjuration relation between the phase difference φ and
quasi charge q as [φ, q] = i , i.e., operators e±2πiq translate the phase difference by
±2π, φ → φ ± 2π. In the transmon limit (EJ ≫ EC), the amplitude is exponentially
small, Λ ≪ 1, and the quantum phase slips become rare events. When the number
of the Josephson junctions in the chain is small enough, the contribution of the quan-
tum phase slip is negligible and the Josephson-junction chain faithfully behaves as
the superinductor consisting of Josephson inductances LL. However, the recent tech-
nological development enables the realization of longer chains with N ∼ 104 [89] for
which a finite density of quantum phase slips can appear.

Since the total charge in the elementary cell, inside of the red-dashed box in
Fig. B.1, is zero, the charge on the n-th ground capacitance is 2e(qn+1 − qn), and
the Coulomb energy at the ground capacitance along the Josephson-junction chain
is

ECoulomb = ∑
n

(2e)2

2Cg
(qn+1 − qn)

2. (B.4)

We assume that all characteristic frequencies are much smaller than the plasma
frequency and employ the adiabatic approximation in which the quasicharge is a
smooth function of the position. In the continuum limit (∑n a →

∫
dx), the Coulomb

energy is expressed as

ECoulomb =
∫ d

0
dx aEg [∂xq(x, t)]2 . (B.5)

where d is the chain length and Eg = (2e)2/(2Cg) is the charging energy at the
ground capacitance. Note that the continuous approximation is valid when the char-
acteristic wave vectors are much smaller than 1/a and the plasma frequency is much
smaller than v/a [87]. The latter condition is equivalent to small ground capacitance
Cg ≪ C (or Eg ≫ EC), which corresponds to the large charge screening length
ℓsc = a

√
C/Cg ≫ a, i.e., long-range Coulomb interaction. The inductive energy

along the chain is

Einductive = ∑
n

L
2
(2eq̇n)

2 , (B.6)

and it can be expressed in the continuum limit as

Einductive =
∫ d

0
dx

1
a
(2e)2L

2
[q̇(x, t)]2 . (B.7)

Here, we have introduced the phenomenological inductance L between the Joseph-
son junction for simplicity [87]. We note that the mass term, ∝ q̇2, can be derived
from the Hubbard-Stratonovich transformation [161, 162] without introducing the
phenomenological inductance. In this derivation, the phenomenological inductance
coincides with the Josephson inductance, Eq. (2.16), in the transmon limit (EJ ≫ EC).
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Therefore, the inductive energy reads

Einductive =
∫ d

0
dx

1
a
(2e)2LJ

2
[q̇(x, t)]2 =

∫ d

0
dx

1
a

h̄2

2EJ
[q̇(x, t)]2 . (B.8)

Combining Eqs. (B.2), (B.5), and (B.8), we obtain the full Lagrangian as

L =
∫ d

0
dx

{
1
a

h̄2

2EJ
[q̇(x, t)]2 − aEg [∂xq(x, t)]2 +

1
a

Λ cos [2πq(x, t)]

}
. (B.9)

Finally, by introducing a new field θ(x, t) = πq(x, t), we obtain the Lagrangian,
Eq. (2.44) in the main text.
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Appendix C

Impedance of RLC Transmission
Lines

In this appendix, we derive the analytical expression of the impedance of the RLC
transmission lines with spatially-dependent resistances (3.28).

Assuming |ωCL,jZL,j+1(ω)| ≪ 1, the recurrence relation (3.26) becomes a differ-
ential equation in the continuous limit (N → ∞):

∂Z(ω, x)
∂x

= −r(x) + iωl(x) + iωc(x)Z2(ω, x), (C.1)

where Z(ω, x = j/N) ≡ ZL,j(ω), and r(x), l(x), and c(x) are the resistance, capaci-
tance, and inductance per unit length at x = j/N, respectively. The total impedance
of the RLC transmission line is obtained from the relation ZL(ω) = Z(ω, x → 0).
The spatial dependence of the circuit elements given in Eq. (3.28) can be rewritten in
the continuous limit as

r(x) = rxn, l(x) = 0, c(x) = c. (C.2)

At x ≫ x∗ ≡ (n2/4ωrc)1/(n+2), we can neglect ∂xZ(ω, x) and then obtain the
impedance as

Z(ω, x) ≈ ZA(ω, x) =
√

r
iωc

xn/2. (C.3)

At x ≪ x∗, where the first term, rxn, on the right-hand side of Eq. (C.1), can be
neglected, the impedance is given by

Z(ω, x) ≈ ZB(ω, x) =
1

−iωcx + f (ω)
, (C.4)

where f (ω) is the constant of integration determined from the condition ZA(ω, x∗) =
ZB(ω, x∗). Finally, we obtain the impedance of the RLC transmission line as

ZL(ω) ∼ ZB(ω, x → 0) =
n√
2ωc

(
4ωrc

n2

)1/(n+2)
(

1 + i
n +

√
2√

2

)−1

. (C.5)

for ω∗ ≪ ω ≪ ωc. Therefore, the spectral density is obtained as

IL(ω) ∝ ĨL(ω) = ωRe[ZL(ω)] ∝ ω1/(n+2). (C.6)

This expression is consistent with Eq. (3.29). Note that the high-frequency cutoff ωc
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is obtained through the condition ωC|ZA(ω, x∗)| ≪ 1, where the recurrence rela-
tion (3.26) can be reduced to the differential equation (C.1) for x < x∗. The imagi-
nary part of the impedance shows a sharp peak for x ∼ 1. Then, for x > x∗, it can be
neglected in the above analysis, given a condition ωC(1 − x∗)Im [ZA(ω, x∗)] ≫ 1,
which results in the low-frequency cutoff ω∗ (3.30).
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Appendix D

Fokker-Planck Equation

In this appendix, we provide the general recipe to derive the Fokker-Planck equa-
tion (4.43) from the Ricatti equation (4.42) and Gaussian correlators (4.36) and (4.37).

First, we consider the general dynamical equation for the multidimensional vari-
able X⃗ = (X1, X2, . . . , XN),

∂tXi(t) = ai(X⃗(t)) + ∑
j

bij(X⃗(t))ξ j(t), (D.1)

where ξ j(t) is the random force characterized by the Gaussian correlator,〈
ξi(t)ξ j(t′)

〉
= 2Dijδ(t − t′). (D.2)

Then, the joint probability P(t, X⃗) of the variables X1, X2, . . . , XN satisfies the Fokker-
Planck equation [163]

∂P(t, X⃗)

∂t
= −∑

i

∂

∂Xi

[
ai(X⃗)P(t, X⃗)

]
+ ∑

ijlm
Dlm

∂

∂Xi

{
bil(X⃗)

∂

∂Xj

[
bjm(X⃗)P(t, X⃗)

]}
.

(D.3)

This general formula has the correspondence with our model as follows: t = x,
X⃗(t) = z(x), a1 = 0, (b11, b12, b13) = (2iz, i, iz2), (ξ1, ξ2, ξ3) = (∆0, ∆∗, ∆), and D11 D12 D13

D21 D22 D23
D31 D32 D33

 =

 ω⋆/2ℓ0(ω) 0 0
0 0 ω⋆/2ℓπ(ω)
0 ω⋆/2ℓπ(ω) 0

 . (D.4)

By using the above correspondence and introducing z = eiθ1 e−θ2 , we obtain Eq. (4.43).
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Appendix E

Exact Solution of P2(x, θ2)

In this appendix, according to Ref. [135], we find the solution of Eq. (4.46) for the
conditional probability P2(x, θ2) with the initial condition P2(x = d, θ2) = δ(θ2 +
ln r0).

To this end, we use various changes of variables to recover equivalent formu-
lations of that equation. First, introducing τ = (d − x)/ℓπ, λ (> 0) such that
e−2θ2 = λ/(1 + λ), and P̃(τ, λ) = P2(τ, θ2)|dθ2/dλ|, Eq. (4.46) reads

∂P̃
∂τ

=
∂

∂λ

[
λ(1 + λ)

∂P̃
∂λ

]
. (E.1)

Then, introducing X (> 0) such that λ = sinh2 X and P̄(τ, X) = P̃(τ, λ)|dλ/dX|, we
find

∂P̄
∂τ

=
1
4

[
∂2P̄
∂X2 − ∂

∂X

(
2 cosh 2X
sinh 2X

P̄
)]

. (E.2)

Furthermore, using a new probability variable Q(X) = P̄(X)/
√

sinh 2X, it satisfies

−∂Q
∂τ

=

(
H+

1
4

)
Q (E.3)

with an effective Hamiltonian

H = −1
4

∂2

∂X2 − 1
4 sinh2 2X

. (E.4)

Together with Eq. (E.2), the probability conservation,∫ ∞

0
dXP̄(τ, X) = 1, (E.5)

imposes

lim
X→0

(
∂P̄
∂X

− P̄
X

)
= 0 (E.6)

and, subsequently,

lim
X→0

(
∂Q
∂X

− Q
2X

)
= 0. (E.7)
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The knowledge about a normalized eigenspectrum of Eq. (E.4), Hψk = εkψk, with
the boundary condition (E.7) allows us to express the conditional probability as

P̄(τ, X) =

√
sinh 2X
sinh 2X′ ∑

k
ψk(X)ψ∗

k (X′)e−(εk+1/4)τ, (E.8)

such that P(0, X) = δ(X − X′) with cosh 2X′ = (2 − T0)/T0.
Now, we consider the solution of the eigenvalue problem, Hψk = εkψk, with the

boundary condition (E.7). By changing variable z = cosh 2X (> 1) and fk(z) such
that ψk(X) =

√
sinh 2X fk(cosh 2X), the new variable fk(z) satisfies the Legendre

differential equation

d
dz

[
(1 − z2)

d fk

dz

]
+ ν(ν + 1) fk = 0, (E.9)

with (ν + 1/2)2 = −εk. The boundary condition (E.7) translates into[
(z − 1)3/4 d fk(z)

dz

]
z→1

= 0. (E.10)

The solution of Eq. (E.9) is expressed by the Legendre functions of the first and sec-
ond kind, Pν(z) and Qν(z), respectively. The boundary condition (E.10) excludes
Qν(z) from the set of solutions because it diverges logarithmically at z → 1. As
Pν(z) ∼ z−ν−1 for |z| ≫ 1, the normalizability condition of the wavefunctions also
requires Re[ν] > 1/2, which results in that only solutions with εk > 0 are allowed
from the relation (ν + 1/2)2 = −εk. Thus, the set of solutions is given by the conical
functions, fk(z) = CkP−1/2+ik/2(z) with εk = k2/4 (k > 0) and the pre-factor Ck [as
P−1/2+ik/2(z) = P−1/2−ik/2(z)]. The normalization condition∫ ∞

0
dxψk(x)ψk′(x) = δ(k − k′) (E.11)

is then obtained by choosing Ck =
√

πk tanh(πk/2). Finally, Eq. (E.8) reads

P̄(τ, X) =
sinh 2X

2

∫ ∞

0
dk k tanh

(
πk
2

)
P− 1

2+i k
2
(cosh 2X)

×P− 1
2+i k

2
(cosh 2X′)e−(1+k2)τ/4. (E.12)

Reverting to variable θ2 and setting x = 0, i.e., τ = d/ℓπ, we obtain Eq. (4.48).
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Appendix F

Gaussian White-noise Disorder
Potential

In this appendix, we show analytical results from the literature on a model with
Gaussian white-noise disorder potential, which was used in plotting some of the
lines in Figs. 4.6, 4.9 and 4.8 [148, 145, 139]. We assume that the correlation of the
disorder potential corresponds to the first term of Eq. (4.27) including the delta func-
tion as a white-noise disorder potential. Note that the literature mostly addresses
the stationary Schrödinger equation at energy E. In the context of Eq. (4.10), we set
E = ω2 (≥ 0) and then use positive-energy results in literature.

The Lyapunov exponent for the white-noise disorder potential is given by [145]

⟨γ(ω)⟩ R⋆ =
1
2

∫ ∞
0 dx

√
x exp

[
−x3/24 − x/2(ω/ω⋆)2]∫ ∞

0 dx 1/
√

x exp [−x3/24 − x/2(ω/ω⋆)2]
. (F.1)

This formula is plotted by the dotted line in Fig. 4.6 (a). Then, it yields the zero-
frequency result

⟨γ(0)⟩ R⋆ =
31/3√π

Γ(1/6)
≈ 0.46, (F.2)

while, at ω ≫ ω⋆, the Thouless relation holds ⟨γ(ω)⟩ R⋆ = (ω⋆/ω)2/2 as well as
our pinned model.

The variance of the Lyapunov exponent is given by [141]

〈〈
γ2(ω)

〉〉
R⋆d =

∫ ∞

0
ds

1
s

Re
[(

2 ⟨γ(ω)⟩ R⋆ − i
d
ds

)
f 2(s)

]
, (F.3)

with f (s) = ϕ(s)/ϕ(0) and

ϕ(s) = Ai
(
− (ω/ω⋆)2 + 2is

22/3

)
− i Bi

(
− (ω/ω⋆)2 + 2is

22/3

)
, (F.4)

where Ai and Bi are Airy functions. This formula is plotted by the dotted line in
Fig. 4.6 (b). It yields the zero-frequency result [139]

〈〈
γ2(0)

〉〉
d = ⟨γ(0)⟩

[
5π

3
√

3
− 3F2

(
1, 1,

7
6

;
3
2

,
3
2

;
3
4

)]
≈ 1.1 ⟨γ(0)⟩ , (F.5)

where 3F2 is an hypergeometric function, while, at ω ≫ ω⋆, ⟨⟨γ2(ω)⟩⟩ d = ⟨γ(ω)⟩.
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The distribution of the reflection phase at the perfect impedance matching (K =
K0) between a half-infinite chain and a waveguide [147],

P1(θ1) =
(ω/ω⋆)2 + Z2

2|ω|/ω⋆
P(Z)

∣∣∣∣
Z=−(ω/ω⋆) tan(θ1/2)

, (F.6)

is related with the distribution of the Ricatti variable Z,

P(Z) =

∫ ∞
0 dx exp

[
−x3/24 − x/2(ω/ω⋆)2 − x/2(Z − x/2)2]∫ ∞

0 dx
√

2π/x exp [−x3/24 − x/2(ω/ω⋆)2]
. (F.7)

From Eqs. (F.1) and (F.7), we can check that the relation

⟨γ(ω)⟩ R⋆ =
∫

dZ ZP(Z), (F.8)

holds at any ω. While, at ω ≫ ω⋆, the distribution is uniform, P1(θ1) ≈ 1/(2π), at
0 < ω ≪ ω⋆, the distribution is concentrated around phase θ1 = −π with

P1(θ1) ≈ ω⋆

ω
p
(
(θ1 + π)

ω⋆

ω

)
, (F.9)

p(φ) =
35/6

√
πΓ(1/6)

∫ ∞

0
dx

1
φ2 exp

(
− x3

6
+

x2

φ
− 2x

φ2

)
, (F.10)

if |θ1 + π| ≪ 1. The function p(φ) is plotted by the dotted line in the inset of Fig. 4.8.
The tails of the distribution P1(θ1) at |θ1 + π| ≫ ω/ω⋆ are given by

P1(θ1) ≈
αω/ω⋆

cos2(θ1/2)
, α =

31/6Γ(2/3)
27/3π

≈ 0.10. (F.11)

From Eq. (F.6), we can find the real part of the disorder-averaged reflection coef-
ficient at any impedance mismatch (K < K0),

r′ + 1 =
2

1 + (K0/K)2 tan2(θ1/2)
. (F.12)

While, at ω ≫ ω⋆, Eq. (4.61) is reproduced with the uniform distribution, at ω ≪ ω⋆,
the average is contributed by the tails of the distribution P1(θ1), Eq. (F.11), which
yields

〈
r′
〉
+ 1 = 4πα

K
K0

ω

ω⋆
. (F.13)

At large impedance mismatch (K ≪ K0), Eq. (F.12) is approximated by r′ + 1 ≈
4π(K/K0)δ(θ1), which results in

〈
r′
〉
+ 1 = 4π

K
K0

P1(θ1 = 0) (F.14)

with P1(θ1) of Eq. (F.6). This formula is plotted by dotted line in Fig. 4.9. We can
check that Eq. (F.14) reproduces Eq. (F.13) using Eq. (F.11) for θ1 ≈ 0.

The linear frequency dependence in Eq. (F.13) at low frequency, as well as the sat-
uration at ω ≫ ω⋆, reflects the frequency dependence of the bulk plasmon density
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of modes. Indeed by using the particle density of states of the Schrödinger prob-
lem [164, 165, 145] at energy E = ω2 (> 0), we find

ν(ω)

ν0
=

ω

ω⋆

√
2π

∫ ∞
0 dx

√
x exp

[
−x3/24 − x/2(ω/ω⋆)2]{∫ ∞

0 dx 1/
√

x exp [−x3/24 − x/2(ω/ω⋆)2]
}2 , (F.15)

where ν0 = 1/(πv). In particular,

ν(ω)/ν0 =

{
1, (ω ≫ ω⋆),

6π 31/6/Γ2(1/6) (ω/ω⋆) ≈ 0.73 ω/ω⋆, (ω ≪ ω⋆).
(F.16)

The linear frequency dependence at low frequencies reflects the finite particle den-
sity of states ν̃(0) of the Schrödinger problem at E = 0 due to the relation ν(ω) =
2ων̃(ω2), which connects the waves’ and particles’ densities of states. The finiteness
of ν̃(0) is a precursor of the Lifshits tail of states at E < 0 , which is an inaccessible
region for waves. Note that the overall frequency dependences of ⟨r′(ω)⟩+ 1 and
ν(ω) are different.

Note that Eqs. (F.1) and (F.15) alternatively read

⟨γ(ω)⟩ R⋆ = −Im
[

f ′(s = 0)
]

, (F.17)

ν(ω)/ν0 = −ω⋆Re
[

d
dω

f ′(s = 0)
]

, (F.18)

respectively. Actually, the relation of the Lyapunov exponent ⟨γ(ω)⟩ and the density
of modes ν(ω) to a common analytic function in the upper complex plane is valid
beyond the Gaussian white-noise model. It is a consequence of the Herbert-Jones-
Thouless relation [166] for any potential with translational invariance,

γ(E)− γ0(E) =
∫

dE′ ln |E − E′|
[
ν̃(E′)− ν̃0(E′)

]
. (F.19)

Here, γ0(E) = Θ(−E)
√
−E/v and ν̃0(E) = Θ(E)/(2πv

√
E) are for a free particle.

In the presence of a random potential, γ(E) and ν̃(E) are the respective functions
averaged over the disorder realizations, and the translational invariance property
refers to the correlation function of the potential. Equation (F.8), which relates the
Lyapunov exponent with the average the Ricatti variable, also holds for a transla-
tionally invariant disorder potential, under an additional assumption of inversion
symmetric disorder [131].
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Appendix G

Heat Current in the Keldysh
Formalism

In this appendix, we derive the heat current mediated through the quantum Rabi
model using the picture of the spin-boson model (5.10). The heat current from the
heat bath r into the central system is defined as

Jr ≡ −dHB,r

dt
. (G.1)

Using the Heisenberg equation, the heat current operator reads

Jr = −ih̄
σz

2 ∑
k

Λr,kΞr,k

(
−Br,k + B†

r,k

)
. (G.2)

Then, the expectation value of the heat current is

⟨Jr(t)⟩ = − ih̄
2 ∑

k
Λr,kΞr,k

〈
σz(t)

(
−Br,k(t) + B†

r,k(t)
)〉

, (G.3)

where O(t) = e+iHsbt/h̄Oe−iHsbt/h̄ and ⟨O⟩ = tr[ρ0O] with the initial density matrix
ρ0. Here, we assume that the initial density matrix can be described by product
states:

ρ0 = ρTLS ⊗ ∏
r

e−βrHB,r

ZB,r
, (G.4)

where ρTLS is the density matrix of the two-level system, βr = 1/(kBTr) is the inverse
temperature of the structured heat bath r, and ZB,r is the partition function of the
structured heat bath r. The heat current can be expressed in terms of Green functions
as

⟨Jr(t)⟩ = Re

[
∑

k
Ξr,kΛr,kG<

σz,B†
r,k
(t1, t2)

] ∣∣∣∣∣
t1=t2=t

, (G.5)

where G<
σz,B†

r,k
(t1, t2) is the lesser component of the Green function defined by

G<
A,B(t1, t2) ≡ − i

h̄
⟨B(t2)A(t1)⟩ . (G.6)
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FIGURE G.1: Keldysh contour C = C+ ∪ C−. C+ and C− are forward
and backward branches, respectively.

For later, we introduce other components of the Green function, the retarded and
advanced components,

GR
A,B(t1, t2) ≡ − i

h̄
θ(t1 − t2) ⟨[A(t1), B(t2)]⟩ , (G.7)

GA
A,B(t1, t2) ≡ +

i
h̄

θ(t2 − t1) ⟨[A(t1), B(t2)]⟩ , (G.8)

respectively, where θ(t) is the Heaviside step function.
Now, we move to the Keldysh contour and calculate the lesser component using

the Keldysh formalism. As shown in Fig G.1, the Keldysh contour is composed of
forward and backward branches, where the forward branch, C+, is running from t =
−∞ to t = +∞ and the backward one, C−, is going back in the opposite direction.
First, we introduce the Green function defined on the Keldysh contour as

GA,B(τ1, τ2) ≡ − i
h̄
⟨TC A(τ1)B(τ2)⟩ , (G.9)

where τ is the Keldysh time defined on the Keldysh contour and TC is the Keldysh
time-ordered product operator. The formal expansion with respect to the coupling
provides

Gσz,B†
r,k
(τ1, τ2) = − i

h̄

〈
TCSCσ̃z(τ1)B̃†

r,k(τ2)
〉

, (G.10)

where Õ(τ) = e+i(HTLS+HB)τ/h̄Oe−i(HTLS+HB)τ/h̄ is the time evolution in the interac-
tion picture. The S-matrix on the Keldysh contour SC is

SC =
∞

∑
n=0

(−i)n

n!

∫
C

du1 · · ·
∫

C
dun H̃I(u1) · · · H̃I(un), (G.11)

where the Keldysh time u and
∫

C du indicates a line integral along the Keldysh con-
tour. By using the Wick’s theorem [167], the Green function can be reduced to

Gσz,B†
r,k
(τ1, τ2) =

Λr,k

2

∫
C

du Gσz,σz(τ1, u)gBr,kB†
r,k
(u, τ2), (G.12)

where gBr,k ,B†
r,k
(τ, τ′) is the Green function of the isolated structured heat bath r.

Now, we back to the real-time axis from the Keldysh contour by using the Langreth
rule [168]. The lesser component can be expressed as

G<
σz,B†

r,k
(t1, t2) =

h̄Λr,k

2

∫ ∞

−∞
dt′
[

GR
σz,σz

(t1, t′)g<Br,k ,B†
r,k
(t′, t2) + G<

σz,σz
(t1, t′)gA

Br,k ,B†
r,k(t

′,t2)

]
.

(G.13)
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Therefore, by plugging this expression into Eq. (G.5), the heat current can be written
as

⟨Jr(t)⟩ = Re
∫ ∞

−∞
dt′ (−i)

∂

∂t2

[
GR

σz,σz
(t1, t′)Σ<

r (t
′, t2) + G<

σz,σz
(t1, t′)ΣA

r (t
′, t2)

] ∣∣∣
t1=t2=t

,

(G.14)

where Σ<
r (t, t′) and ΣA

r (t, t′) are the lesser and advanced components of the self-
energy,

Σ<
r (t, t′) ≡ ∑

k

h̄Λ2
r,k

2
g<Br,k ,B†

r,k
(t, t′) = − ih̄

2

∫ ∞

0
dω e−iω(t−t′) Ieff,r(ω)nr(ω), (G.15)

ΣA
r (t, t′) ≡ ∑

k

h̄Λ2
r,k

2
gA

Br,k ,B†
r,k
(t, t′) =

ih̄
2

θ(t − t′)
∫ ∞

0
dω e+iω(t−t′) Ieff,r(ω), (G.16)

with the Bose-Einstein distribution, nr(ω) = 1/(eβrω − 1), in the structured heat
bath r. Here, we have used the definition of the spectral density (2.38). Finally, by
performing the Fourier transformation, we obtain the formula for the heat current,
Eq. (5.16) in the main text.
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Appendix H

Mapping to the Spin-boson Model

In this appendix, we provide the detail of the mapping from the dissipative quan-
tum Rabi model (5.4) to the spin-boson model (5.10) with the structured spectral
density (5.14).

Let us start with the dissipative quantum Rabi model given as

H = HS + ∑
r
(Hres,r +Hbath,r) + ∑

r
(HS-res,r +Hres-bath,r) , (H.1)

HS = − h̄∆
2

σx, (H.2)

Hres,r =
P2

r
2mr,0

+
1
2

MrΩ2
r X2

r , (H.3)

Hbath,r = ∑
k

(
p2

r,k

2mr,k
+

1
2

mr,kω2
r,kx2

r,k

)
, (H.4)

where HS, Hres,r, and Hbath,r describe the two-level system, the harmonic oscillator
r (= L, R), and the heat bath r, respectively. For the harmonic oscillator r, the Hamil-
tonian is rewritten using a natural frequency Ωr, a mass Mr, a momentum operator
Pr, and a position operator Xr. The heat bath r is described by a collection of the
harmonic oscillators, where its Hamiltonian is similarly rewritten by using a natural
frequency ωr,k, a mass mr,k, a momentum operator pr,k, and a position operator xr,k.
The coupling between the two-level system and the harmonic oscillator is described
by

HS-res,r = −1
2

CrσzXr, (H.5)

where Cr denotes a coupling strength. Similarly, the coupling between the harmonic
oscillator and the heat bath is by

Hres-bath,r = −∑
k

cr,kXrxr,k, (H.6)

where cr,k denotes a coupling strength. It is easy to check that the Hamiltonian (H.1)
reproduces the original form given in the main text (5.4) by introducing annihilation
operators defined as

ar =

√
MrΩr

2h̄

(
Xr +

i
MrΩr

Pr

)
, (H.7)

br,k =

√
mr,kωr,k

2h̄

(
xr,k +

i
mr,kωr,k

pr,k

)
. (H.8)
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We note that the coupling strengths, Cr and cr,k, are related to the parameters used
in the main text as

gr = − Cr√
8h̄MrΩr

, λr,k = − cr,k√
4MrΩrmr,kωr,k

, (H.9)

respectively.
Now, we consider a composite system composed of the harmonic oscillator r and

the heat bath r, whose Hamiltonian is given as

Hres+bath,r = Hres,r +Hbath,r +Hres-bath,r. (H.10)

The key idea of the present mapping is that the Hamiltonian Hres+bath,r is exactly
solvable because it only includes the harmonic oscillators. Indeed, the Hamiltonian
Hres+bath,r can be diagonalized by the canonical transformation [169, 170] as

Hres+bath,r = ∑
k

(
p̃2

r,k

2m̃r,k
+

1
2

m̃r,kω̃2
r,k x̃2

r,k

)
, (H.11)

where p̃r,k and x̃r,k are new momentum and position operators, respectively. This
expression indicates that the composite system can be regarded as an effective heat
bath for the spin-boson model. Then, the coupling between the effective heat bath
and the two-level system is obtained by rewriting HS-res,r with the new operator x̃r,k
as

H̃S-bath,r = −1
2

σz ∑
k

c̃r,k x̃r,k, (H.12)

where c̃r,k is a coupling strength between the two-level system and the effective heat
bath. This coupling form between the two-level system and the heat bath takes the
bilinear form after the canonical transformation. Thus, the resultant model becomes
the spin-boson model. By using the relation

∑
k

c̃r,k x̃r,k = CrXr, (H.13)

the spectral density of the effective heat bath can be written by

Ieff,r(ω) =
C2

r
πh̄

Im [Gr(ω)] . (H.14)

Here, Gr(ω) is the Fourier transformation of a correlation function of the harmonic
oscillator

Gr(t) = − 1
ih̄

θ(t) ⟨[Xr(t), Xr(0)]⟩bath,r , (H.15)

where Xr(t) and ⟨Xr⟩bath,r indicate the time evolution and the thermal average with
respect to Hres+bath,r. The linear response theory allows the Fourier transformation
of the correlation function to find [17]

Gr(ω) =
1

Mr

1
Ω2

r − ω2 − iωγr(ω)
, (H.16)



Appendix H. Mapping to the Spin-boson Model 107

with the friction kernel

γr(t) = θ(t)
1

Mr
∑

k

c2
r,k

mr,kω2
r,k

cos(ωr,kt). (H.17)

Assuming the heat baths of the original model as the Ohmic baths (5.9), the Fourier
transformation of the friction kernel reads constant, γr(ω) = 2πηrΩr = 2Γr. There-
fore, the effective spectral density (H.14) is calculated as

Ieff,r(ω) =
C2

r
πh̄Mr

2Γrω

(Ω2
r − ω2)2 + (2Γrω)2 . (H.18)

Using Eq. (H.9), we obtain Eq. (5.14) in the main text.
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